Skip to main content

Bilevel Optimization by Conditional Bayesian Optimization

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

Bilevel optimization problems have two decision-makers: a leader and a follower (sometimes more than one of either, or both). The leader must solve a constrained optimization problem in which some decisions are made by the follower. These problems are much harder to solve than those with a single decision-maker, and efficient optimal algorithms are known only for special cases. A recent heuristic approach is to treat the leader as an expensive black-box function, to be estimated by Bayesian optimization. We propose a novel approach called ConBaBo to solve bilevel problems, using a new conditional Bayesian optimization algorithm to condition previous decisions in the bilevel decision-making process. This allows it to extract knowledge from earlier decisions by both the leader and follower. We present empirical results showing that this enhances search performance and that ConBaBo outperforms some top-performing algorithms in the literature on two commonly used benchmark datasets.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number 16/RC/3918.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abo-Elnaga, Y., Nasr, S.: Modified evolutionary algorithm and chaotic search for bilevel programming problems. Symmetry 12 (2020). https://doi.org/10.3390/SYM12050767

  2. authors, T.G.: GPyOpt: a Bayesian optimization framework in python (2016). http://github.com/SheffieldML/GPyOpt

  3. Bard, J.F.: Coordination of a multidivisional organization through two levels of management. Omega 11(5), 457–468 (1983). https://doi.org/10.1016/0305-0483(83)90038-5

    Article  Google Scholar 

  4. Bard, J.F., Falk, J.E.: An explicit solution to the multi-level programming problem. Comput. Oper. Res. 9(1), 77–100 (1982). https://doi.org/10.1016/0305-0548(82)90007-7

    Article  MathSciNet  Google Scholar 

  5. Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem. SIAM J. Sci. Stat. Comput. 11(2), 281–292 (1990). https://doi.org/10.1137/0911017

    Article  MathSciNet  Google Scholar 

  6. Bialas, W., Karwan, M.: On two-level optimization. IEEE Trans. Autom. Control 27(1), 211–214 (1982). https://doi.org/10.1109/TAC.1982.1102880

    Article  Google Scholar 

  7. Bracken, J., McGill, J.T.: Defense applications of mathematical programs with optimization problems in the constraints. Oper. Res. 22(5), 1086–1096 (1974). https://doi.org/10.1287/opre.22.5.1086

    Article  MathSciNet  Google Scholar 

  8. Brown, G., Carlyle, M., Diehl, D., Kline, J., Wood, R.: A two-sided optimization for theater ballistic missile defense. Oper. Res. 53, 745–763 (2005). https://doi.org/10.1287/opre.1050.0231

    Article  MathSciNet  Google Scholar 

  9. Constantin, I., Florian, M.: Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. Int. Trans. Oper. Res. 2(2), 149–164 (1995). https://doi.org/10.1016/0969-6016(94)00023-M

    Article  Google Scholar 

  10. Cox, D.D., John, S.: SDO: a statistical method for global optimization. In: Multidisciplinary Design Optimization: State-of-the-Art, pp. 315–329 (1997)

    Google Scholar 

  11. Dogan, V., Prestwich, S.: Bayesian optimization with multi-objective acquisition function for bilevel problems. In: Longo, L., O’Reilly, R. (eds.) AICS 2022. CCIS, vol. 1662, pp. 409–422. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26438-2_32

    Chapter  Google Scholar 

  12. Frazier, P.: A tutorial on Bayesian optimization. ArXiv abs/1807.02811 (2018)

    Google Scholar 

  13. Hong, M., Wai, H.T., Wang, Z., Yang, Z.: A two-timescale framework for bilevel optimization: complexity analysis and application to actor-critic. ArXiv abs/2007.05170 (2020)

    Google Scholar 

  14. Islam, M.M., Singh, H.K., Ray, T., Sinha, A.: An enhanced memetic algorithm for single-objective bilevel optimization problems. Evol. Comput. 25, 607–642 (2017). https://doi.org/10.1162/EVCO_a_00198

    Article  Google Scholar 

  15. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998). https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  Google Scholar 

  16. Kieffer, E., Danoy, G., Bouvry, P., Nagih, A.: Bayesian optimization approach of general bi-level problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 1614–1621. Association for Computing Machinery (2017). https://doi.org/10.1145/3067695.3082537

  17. Kirjner-Neto, C., Polak, E., Kiureghian, A.D.: An outer approximation approach to reliability-based optimal design of structures. J. Optim. Theory Appl. 98(1), 1–16 (1998)

    Article  MathSciNet  Google Scholar 

  18. Koh, A.: Solving transportation bi-level programs with differential evolution. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2243–2250 (2007). https://doi.org/10.1109/CEC.2007.4424750

  19. Koppe, M., Queyranne, M., Ryan, C.T.: Parametric integer programming algorithm for bilevel mixed integer programs. J. Optim. Theory Appl. 146(1), 137–150 (2010). https://doi.org/10.1007/S10957-010-9668-3

    Article  MathSciNet  Google Scholar 

  20. Kraft, D.: A software package for sequential quadratic programming. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht, Wiss. Berichtswesen d. DFVLR (1988)

    Google Scholar 

  21. Legillon, F., Liefooghe, A., Talbi, E.G.: CoBRA: a cooperative coevolutionary algorithm for bi-level optimization. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012). https://doi.org/10.1109/CEC.2012.6256620

  22. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1), 503–528 (1989). https://doi.org/10.1007/BF01589116

    Article  MathSciNet  Google Scholar 

  23. Ma, L., Wang, G.: A solving algorithm for nonlinear bilevel programing problems based on human evolutionary model. Algorithms 13(10), 260 (2020)

    Article  MathSciNet  Google Scholar 

  24. Migdalas, A.: Bilevel programming in traffic planning: models, methods and challenge. J. Glob. Optim. 7, 381–405 (1995). https://doi.org/10.1007/BF01099649

    Article  MathSciNet  Google Scholar 

  25. Pearce, M., Klaise, J., Groves, M.J.: Practical Bayesian optimization of objectives with conditioning variables. arXiv Machine Learning (2020)

    Google Scholar 

  26. Sabach, S., Shtern, S.: A first order method for solving convex bi-level optimization problems (2017). https://doi.org/10.48550/ARXIV.1702.03999

  27. Sahin, K., Ciric, A.R.: A dual temperature simulated annealing approach for solving bilevel programming problems. Comput. Chem. Eng. 23, 11–25 (1998)

    Article  Google Scholar 

  28. Savard, G., Gauvin, J.: The steepest descent direction for the nonlinear bilevel programming problem. Oper. Res. Lett. 15(5), 265–272 (1994). https://doi.org/10.1016/0167-6377(94)90086-8

    Article  MathSciNet  Google Scholar 

  29. Shaban, A., Cheng, C.A., Hatch, N., Boots, B.: Truncated back-propagation for bilevel optimization. CoRR abs/1810.10667 (2018)

    Google Scholar 

  30. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., Freitas, N.D.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218

    Article  Google Scholar 

  31. Sinha, A., Malo, P., Deb, K.: Unconstrained scalable test problems for single-objective bilevel optimization. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012). https://doi.org/10.1109/CEC.2012.6256557

  32. Sinha, A., Malo, P., Deb, K.: Efficient evolutionary algorithm for single-objective bilevel optimization (2013). https://doi.org/10.48550/ARXIV.1303.3901

  33. Sinha, A., Malo, P., Deb, K.: An improved bilevel evolutionary algorithm based on quadratic approximations. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1870–1877 (2014). https://doi.org/10.1109/CEC.2014.6900391

  34. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2018). https://doi.org/10.1109/TEVC.2017.2712906

    Article  Google Scholar 

  35. Sinha, A., Malo, P., Frantsev, A., Deb, K.: Multi-objective Stackelberg game between a regulating authority and a mining company: a case study in environmental economics. In: 2013 IEEE Congress on Evolutionary Computation, pp. 478–485 (2013). https://doi.org/10.1109/CEC.2013.6557607

  36. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012). https://doi.org/10.1109/tit.2011.2182033

    Article  MathSciNet  Google Scholar 

  37. Stackelberg, H.V.: The theory of the market economy. William Hodge, London (1952)

    Google Scholar 

  38. Talbi, E.G.: A taxonomy of metaheuristics for bi-level optimization. In: Talbi, E.G. (ed.) Metaheuristics for Bi-level Optimization. Studies in Computational Intelligence, vol. 482, pp. 1–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37838-6_1

    Chapter  Google Scholar 

  39. Vicente, L., Savard, G., Júdice, J.: Descent approaches for quadratic bilevel programming. J. Optim. Theory Appl. 81(2), 379–399 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number 16/RC/3918 which is co-funded under the European Regional Development Fund. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedat Dogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dogan, V., Prestwich, S. (2024). Bilevel Optimization by Conditional Bayesian Optimization. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics