Skip to main content

Deep Conditional Shape Models for 3D Cardiac Image Segmentation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

  • 260 Accesses

Abstract

Delineation of anatomical structures is often the first step of many medical image analysis workflows. While convolutional neural networks achieve high performance, these do not incorporate anatomical shape information. We introduce a novel segmentation algorithm that uses Deep Conditional Shape models (DCSMs) as a core component. Using deep implicit shape representations, the algorithm learns a modality-agnostic shape model that can generate the signed distance functions for any anatomy of interest. To fit the generated shape to the image, the shape model is conditioned on anatomic landmarks that can be automatically detected or provided by the user. Finally, we add a modality dependent, lightweight refinement network to capture any fine details not represented by the implicit function. The proposed DCSM framework is evaluated on the problem of cardiac left ventricle (LV) segmentation from multiple 3D modalities (contrast-enhanced CT, non-contrasted CT, 3D echocardiography-3DE). We demonstrate that the automatic DCSM outperforms the baseline for non-contrasted CT without the local refinement, and with the refinement for contrasted CT and 3DE, especially with significant improvement in the Hausdorff distance. The semi-automatic DCSM with user-input landmarks, while only trained on contrasted CT, achieves greater than 92% Dice for all modalities. Both automatic DCSM with refinement, and semi-automatic DCSM achieve equivalent or better performance compared to inter-user variability for these modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7, 25 (2020)

    Article  Google Scholar 

  2. Yousef, R., Gupta, G., Yousef, N., Khari, M.: A holistic overview of deep learning approach in medical imaging. Multimed. Syst. 28, 881–914 (2022)

    Article  Google Scholar 

  3. Zhang, P., Zhong, Y., Deng, Y., Tang, X., Li, X.: A survey on deep learning of small sample in biomedical image analysis (2019)

    Google Scholar 

  4. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation (2019). ArXiv190105103 Cs

    Google Scholar 

  5. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space (2019). ArXiv181203828 Cs

    Google Scholar 

  6. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks (2020). ArXiv200304618 Cs

    Google Scholar 

  7. Chou, G., Chugunov, I., Heide, F.: GenSDF: two-stage learning of generalizable signed distance functions (2022)

    Google Scholar 

  8. Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543–563 (2009)

    Article  Google Scholar 

  9. Oktay, O., Ferrante, E., Kamnitsas, K., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37, 384–395 (2018)

    Article  Google Scholar 

  10. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. LNCS, vol. 12261, pp 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

  11. Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., Lalande, A., Jodoin, P.-M.: Cardiac segmentation with strong anatomical guarantees. IEEE Trans. Med. Imaging 39, 3703–3713 (2020)

    Article  Google Scholar 

  12. Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. MICCAI 2017. LNCS, vol. 10435, pp. 507–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_58

  13. Ding, K., et al.: Graph convolutional networks for multi-modality medical imaging: methods, architectures, and clinical applications (2022)

    Google Scholar 

  14. Chen, Z., Zhang, H.: Learning Implicit Fields for Generative Shape Modeling (2019). ArXiv181202822 Cs

    Google Scholar 

  15. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Deep level sets: implicit surface representations for 3d shape inference (2019)

    Google Scholar 

  16. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction (2021)

    Google Scholar 

  17. Amiranashvili, T., Menze, B., Zachow, S.: Learning shape reconstruction from sparse measurements with neural implicit functions. In: Proceedings of the 5th International Conference on Medical Imaging with Deep Learning

    Google Scholar 

  18. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: 2021 IEEECVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8624–8634. IEEE, Nashville, TN, USA (2021)

    Google Scholar 

  19. Raju, A., Miao, S., Jin, D., Lu, L., Huang, J., Harrison, A.P.: Deep implicit statistical shape models for 3D medical image delineation (2022). ArXiv210402847 Cs

    Google Scholar 

  20. Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., Liang, J.: Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4761–4772. IEEE, Honolulu, HI (2017)

    Google Scholar 

  21. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016)

    Article  Google Scholar 

  22. Samala, R.K., Chan, H.-P., Hadjiiski, L.M., Helvie, M.A., Cha, K.H., Richter, C.D.: Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Phys. Med. Biol. 62, 8894–8908 (2017)

    Article  Google Scholar 

  23. Moeskops, P., et al.: Deep learning for multi-task medical image segmentation in multiple modalities, pp 478–486 (2016)

    Google Scholar 

  24. Moeskops, P., Veta, M., Lafarge, M.W., Eppenhof, K.A.J., Pluim, J.P.W.: Adversarial training and dilated convolutions for brain MRI segmentation (2017)

    Google Scholar 

  25. Javanmardi, M., Tasdizen, T.: Domain adaptation for biomedical image segmentation using adversarial training. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 554–558. IEEE, Washington, DC (2018)

    Google Scholar 

  26. Yang, Q., Li, N., Zhao, Z., Fan, X., Chang, E.I.-C., Xu, Y.: MRI cross-modality image-to-image translation. Sci. Rep. 10, 3753 (2020)

    Article  Google Scholar 

  27. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation (2017). https://doi.org/10.48550/ARXIV.1711.03213

  28. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning (2017)

    Google Scholar 

  29. Bian, C., Yuan, C., Ma, K., Yu, S., Wei, D., Zheng, Y.: Domain adaptation meets zero-shot learning: an annotation-efficient approach to multi-modality medical image segmentation. IEEE Trans. Med. Imaging 41, 1043–1056 (2022)

    Article  Google Scholar 

  30. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains (2020)

    Google Scholar 

  31. Desai, A., Parikh, S., Kumari, S., Raman, S.: PointResNet: residual network for 3d point cloud segmentation and classification (2022)

    Google Scholar 

  32. Ghesu, F.-C., et al.: Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans. Pattern Anal. Mach. Intell. 41, 176–189 (2019)

    Article  Google Scholar 

  33. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27, 1668–1681 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athira J. Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacob, A.J., Sharma, P., Ruckert, D. (2024). Deep Conditional Shape Models for 3D Cardiac Image Segmentation. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics