Skip to main content

k-t CLAIR: Self-consistency Guided Multi-prior Learning for Dynamic Parallel MR Image Reconstruction

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Cardiac magnetic resonance imaging (CMR) has been widely used in clinical practice for the medical diagnosis of cardiac diseases. However, the long acquisition time hinders its development in real-time applications. Here, we propose a novel self-consistency guided multi-prior learning framework named k-t CLAIR to exploit spatiotemporal correlations from highly undersampled data for accelerated dynamic parallel MRI reconstruction. The k-t CLAIR progressively reconstructs faithful images by leveraging multiple complementary priors learned in the x-t, x-f, and k-t domains in an iterative fashion, as dynamic MRI exhibits high spatiotemporal redundancy. Additionally, k-t CLAIR incorporates calibration information for prior learning, resulting in a more consistent reconstruction. Experimental results on cardiac cine and T1W/T2W images demonstrate that k-t CLAIR achieves high-quality dynamic MR reconstruction in terms of both quantitative and qualitative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cmrxrecon.github.io.

  2. 2.

    https://www.synapse.org/#!Synapse:syn51471091/wiki/622548.

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  2. Akçakaya, M., Moeller, S., Weingärtner, S., Uğurbil, K.: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn. Reson. Med. 81(1), 439–453 (2019)

    Article  Google Scholar 

  3. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: Kiki-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)

    Article  Google Scholar 

  4. Fabian, Z., Tinaz, B., Soltanolkotabi, M.: Humus-net: hybrid unrolled multi-scale network architecture for accelerated MRI reconstruction. Adv. Neural. Inf. Process. Syst. 35, 25306–25319 (2022)

    Google Scholar 

  5. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  6. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  7. Han, Y., Sunwoo, L., Ye, J.C.: k-space deep learning for accelerated MRI. IEEE Trans. Med. Imaging 39(2), 377–386 (2020)

    Article  Google Scholar 

  8. Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 61(1), 103–116 (2009)

    Article  Google Scholar 

  9. Küstner, T., et al.: Cinenet: deep learning-based 3D cardiac cine MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci. Rep. 10(1), 13710 (2020)

    Article  Google Scholar 

  10. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR. IEEE Trans. Med. Imaging 30(5), 1042–1054 (2011)

    Article  Google Scholar 

  11. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  12. Lustig, M., Pauly, J.M.: Spirit: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010)

    Article  Google Scholar 

  13. Otazo, R., Candes, E., Sodickson, D.K.: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2015)

    Article  Google Scholar 

  14. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  15. Qin, C., et al.: Complementary time-frequency domain networks for dynamic parallel MR image reconstruction. Magn. Reson. Med. 86(6), 3274–3291 (2021)

    Article  Google Scholar 

  16. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  17. Qin, C., Schlemper, J., Duan, J., Seegoolam, G., Price, A., Hajnal, J., Rueckert, D.: k-t NEXT: dynamic MR image reconstruction exploiting spatio-temporal correlations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 505–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_56

    Chapter  Google Scholar 

  18. Ran, M., et al.: MD-Recon-Net: a parallel dual-domain convolutional neural network for compressed sensing MRI. IEEE Trans. Radiat. Plasma Med. Sci. 5(1), 120–135 (2020)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Ryu, K., Alkan, C., Choi, C., Jang, I., Vasanawala, S.: K-space refinement in deep learning MR reconstruction via regularizing scan specific spirit-based self consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4008–4017 (2021)

    Google Scholar 

  21. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  22. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  23. Sriram, A., Zbontar, J., Murrell, T., Zitnick, C.L., Defazio, A., Sodickson, D.K.: Grappanet: combining parallel imaging with deep learning for multi-coil MRI reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14315–14322 (2020)

    Google Scholar 

  24. Wang, C., et al.: Recommendation for cardiac magnetic resonance imaging-based phenotypic study: imaging part. Phenomics 1, 151–170 (2021)

    Article  Google Scholar 

  25. Wang, C., et al.: Cmrxrecon: an open cardiac MRI dataset for the competition of accelerated image reconstruction. arXiv preprint arXiv:2309.10836 (2023)

  26. Wang, S., et al.: Dimension: dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training. NMR Biomed. 35(4), e4131 (2022)

    Article  Google Scholar 

  27. Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2017)

    Article  Google Scholar 

  28. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839 (2018)

  29. Zhang, L., Li, X., Chen, W.: Camp-net: consistency-aware multi-prior network for accelerated MRI reconstruction. arXiv preprint arXiv:2306.11238 (2023)

Download references

Acknowledgements

This work was supported by a grant from Innovation and Technology Commission of the Hong Kong SAR (MRP/046/20X); and by a Faculty Innovation Award from the Faculty of Medicine of The Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitian Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 133 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Chen, W. (2024). k-t CLAIR: Self-consistency Guided Multi-prior Learning for Dynamic Parallel MR Image Reconstruction. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics