Skip to main content

Automatic Landing Zone Plane Detection in Contrast-Enhanced Cardiac CT Volumes

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Left atrial appendage closure (LAAC) is a common procedure whereby a device is implanted to prevent blood clots in the heart from entering the bloodstream. Selecting an appropriate occlusion device size is essential for the procedure’s success, which involves detecting the device landing zone from a contrast-enhanced computed tomography angiography (CTA) image, and measuring its diameter for sizing. Automating landing zone contour detection is challenging due to complexity of locating a 2D contour in a 3D volume. In this paper, we automate landing zone plane detection using convolutional neural networks (CNNs). We reformulate plane detection as a volumetric heatmap regression problem, for which CNNs are well-suited. Our proposed approach can accurately detect the center of the landing zone as well as the cross-section orientation necessary for measuring device size. Compared to other segmentation-based methods, our approach removes the need for costly annotations. The proposed approach can be applied to any volumetric plane detection or pose estimation problem, which we also demonstrate in the context of aortic valve plane detection in 4D flow phase-contrast magnetic resonance angiography (PCMRA) volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkhouli, M., Ellis, C.R., Daniels, M., Coylewright, M., Nielsen-Kudsk, J.E., Holmes, D.R.: Left atrial appendage occlusion: current advances and remaining challenges. JACC: Adv. 1, 100136 (2022)

    Google Scholar 

  2. Astudillo, P., et al.: Automatic detection of the aortic annular plane and coronary ostia from multidetector computed tomography. J. Intervent. Cardiol. 2020 (2020)

    Google Scholar 

  3. Berhane, H., et al.: Fully automated 3d aortic segmentation of 4d flow MRI for hemodynamic analysis using deep learning. Magn. Reson. Med. 84(4), 2204–2218 (2020)

    Article  Google Scholar 

  4. Blansit, K., Retson, T., Masutani, E., Bahrami, N., Hsiao, A.: Deep learning-based prescription of cardiac MRI planes. Radiol.: Artif. Intell. 1(6), e180069 (2019)

    Google Scholar 

  5. Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part heatmap regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 717–732. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_44

    Chapter  Google Scholar 

  6. Bustamante, M., Viola, F., Engvall, J., Carlhäll, C.J., Ebbers, T.: Automatic time-resolved cardiovascular segmentation of 4d flow MRI using deep learning. J. Magn. Reson. Imaging 57(1), 191–203 (2023)

    Article  Google Scholar 

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Collado, F.M.S., et al.: Left atrial appendage occlusion for stroke prevention in nonvalvular atrial fibrillation. J. Am. Heart Assoc. 10(21), e022274 (2021)

    Article  Google Scholar 

  9. Corrado, P.A., Seiter, D.P., Wieben, O.: Automatic measurement plane placement for 4D Flow MRI of the great vessels using deep learning. Int. J. Comput. Assist. Radiol. Surg. 17(1), 199–210 (2022)

    Article  Google Scholar 

  10. Fujiwara, T., et al.: Segmentation of the aorta and pulmonary arteries based on 4d flow MRI in the pediatric setting using fully automated multi-site, multi-vendor, and multi-label dense u-net. J. Magn. Reson. Imaging 55(6), 1666–1680 (2022)

    Article  Google Scholar 

  11. Jin, C., et al.: Left atrial appendage segmentation using fully convolutional neural networks and modified three-dimensional conditional random fields. IEEE J. Biomed. Health Inform. 22(6), 1906–1916 (2018)

    Article  Google Scholar 

  12. Leventić, H., et al.: Left atrial appendage segmentation from 3D CCTA images for occluder placement procedure. Comput. Biol. Med. 104, 163–174 (2019)

    Article  Google Scholar 

  13. Li, Y., et al.: Standard plane detection in 3D fetal ultrasound using an iterative transformation network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 392–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_45

    Chapter  Google Scholar 

  14. Lian, C., et al.: Multi-task dynamic transformer network for concurrent bone segmentation and large-scale landmark localization with dental CBCT. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 807–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_78

    Chapter  Google Scholar 

  15. Luo, Z., Wang, Z., Huang, Y., Wang, L., Tan, T., Zhou, E.: Rethinking the heatmap regression for bottom-up human pose estimation. In: CVPR, pp. 13264–13273 (2021)

    Google Scholar 

  16. Malik, J., et al.: Handvoxnet: deep voxel-based network for 3d hand shape and pose estimation from a single depth map. In: CVPR, pp. 7113–7122 (2020)

    Google Scholar 

  17. Marin-Castrillon, D.M., et al.: Segmentation of the aorta in systolic phase from 4d flow MRI: multi-atlas vs. deep learning. Magn. Reson. Mater. Phys. Biol. Med., 1–14 (2023)

    Google Scholar 

  18. Michiels, K., Heffinck, E., Astudillo, P., Wong, I., Mortier, P., Bavo, A.M.: Automated MSCT analysis for planning left atrial appendage occlusion using artificial intelligence. J. Interv. Cardiol. 2022 (2022)

    Google Scholar 

  19. Montalt-Tordera, J., et al.: Automatic segmentation of the great arteries for computational hemodynamic assessment. J. Cardiovasc. Magn. Reson. 24(1), 1–14 (2022)

    Article  Google Scholar 

  20. Morais, P., et al.: Fast segmentation of the left atrial appendage in 3-d transesophageal echocardiographic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2332–2342 (2018)

    Article  Google Scholar 

  21. Morais, P., et al.: Semiautomatic estimation of device size for left atrial appendage occlusion in 3-D TEE images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(5), 922–929 (2019)

    Article  Google Scholar 

  22. Ortuño, J.E., et al.: Automatic estimation of aortic and mitral valve displacements in dynamic CTA with 4d graph-cuts. Med. Image Anal. 65, 101748 (2020)

    Article  Google Scholar 

  23. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  24. Qin, C., et al.: Ideal midsagittal plane detection using deep hough plane network for brain surgical planning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 585–593. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_56

    Chapter  Google Scholar 

  25. Wan, C., Probst, T., Van Gool, L., Yao, A.: Dense 3d regression for hand pose estimation. In: CVPR, pp. 5147–5156 (2018)

    Google Scholar 

  26. Yang, D., et al.: Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 633–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_50

    Chapter  Google Scholar 

  27. Zhang, H., Li, Q., Sun, Z.: Joint voxel and coordinate regression for accurate 3d facial landmark localization. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2202–2208. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisette Lockhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lockhart, L., Yi, X., Cassady, N., Nunn, A., Swingen, C., Amir-Khalili, A. (2024). Automatic Landing Zone Plane Detection in Contrast-Enhanced Cardiac CT Volumes. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics