Skip to main content

Combining of Markov Random Field and Convolutional Neural Networks for Hyper/Multispectral Image Classification

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2023 (IDEAL 2023)

Abstract

In the last decades, computer vision tasks such as face recognition, pattern classification, and object detection, have been extensively explored due to advances in computing technologies, learning algorithms, and availability of large amounts of labelled data. Image texture analysis is helpful and important to extracting valuable features of images in order to perform the aforementioned tasks. Markov Random Field (MRF) theory defines probabilistic relationships between the pixel value and its neighbouring pixels, which can help to produce features for classification purposes with deep learning. Convolutional Neural Network (CNN) is a popular feed-forward deep neural network, especially for handling visual tasks. Therefore, this study focuses on combining MRF and CNN in order to achieve hyper/multispectral image classification tasks. MRF images were generated to produce prefixed MRF filters for the first and/or second attention-like layers of CNNs to better extract features. Then CNNs were trained with the prefixed filters for experimentation on the UoM, BONN, and Cassava datasets. Experimental results have demonstrated that such combination of MRF and CNN can enhance classification accuracy while being more time-efficient for hyper/multispectral image classification compared to CNN structures without prefixed MRF filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hung, C.-C., Song, E., Lan, Y.: Image Texture Analysis. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-13773-1

    Book  Google Scholar 

  2. Armi, L., Fekri-Ershad, S.: Texture image analysis and texture classification methods – A review. Int. Online J. Image Process. Pattern Recognit. 2, 1–29 (2019). https://doi.org/10.48550/arXiv.1904.06554

  3. Hammersley, J.M., Clifford, P.: Markov Fields on Finite Graphs and Lattices. Unpubl. Manuscr. 1–26 (1971)

    Google Scholar 

  4. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–225 (1974). https://doi.org/10.1111/j.2517-6161.1974.tb00999.x

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, London, London (2009). https://doi.org/10.1007/978-1-84800-279-1

    Book  MATH  Google Scholar 

  6. Sahin, H.M., Miftahushudur, T., Grieve, B., Yin, H.: Segmentation of weeds and crops using multispectral imaging and CRF-enhanced U-Net. Comput. Electron. Agric. 211, 107956 (2023). https://doi.org/10.1016/j.compag.2023.107956

    Article  Google Scholar 

  7. Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9, 67 (2017). https://doi.org/10.3390/rs9010067

    Article  Google Scholar 

  8. AlSuwaidi, A., Grieve, B., Yin, H.: Towards spectral-texture approach to hyperspectral image analysis for plant classification. In: Yin, H., et al. (eds.) Intelligent Data Engineering and Automated Learning – IDEAL 2017, pp. 251–260. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_28

    Chapter  Google Scholar 

  9. Alsuwaidi, A., Grieve, B., Yin, H.: Combining spectral and texture features in hyperspectral image analysis for plant monitoring. Meas. Sci. Technol. 29, 104001 (2018). https://doi.org/10.1088/1361-6501/aad642

    Article  Google Scholar 

  10. Peng, Y., Yin, H.: Markov random field based convolutional neural networks for image classification. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 387–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_42

    Chapter  Google Scholar 

  11. Peng, Y., Hankins, R., Yin, H.: Data-independent feature learning with Markov random fields in convolutional neural networks. Neurocomputing 378, 24–35 (2020). https://doi.org/10.1016/j.neucom.2019.03.107

    Article  Google Scholar 

  12. Geng, L., Sun, J., Xiao, Z., Zhang, F., Wu, J.: Combining CNN and MRF for road detection. Comput. Electr. Eng. 70, 895–903 (2018). https://doi.org/10.1016/j.compeleceng.2017.11.026

    Article  Google Scholar 

  13. Alsuwaidi, A., Veys, C., Hussey, M., Grieve, B., Yin, H.: Hyperspectral selection based algorithm for plant classification. In: IST 2016 – 2016 IEEE International Conference Imaging System Techniques Proceedings, pp. 395–400 (2016). https://doi.org/10.1109/IST.2016.7738258

  14. Alsuwaidi, A., Veys, C., Hussey, M., Grieve, B., Yin, H.: Hyperspectral feature selection ensemble for plant classification. In: Hyperspectral Imaging Applications (HSI 2016) (2016)

    Google Scholar 

  15. AlSuwaidi, A., Grieve, B., Yin, H.: Feature-ensemble-based novelty detection for analyzing plant hyperspectral datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(4), 1041–1055 (2018). https://doi.org/10.1109/JSTARS.2017.2788426

    Article  Google Scholar 

  16. Peng, Y., et al.: Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning. Sci. Rep. 12, 3113 (2022). https://doi.org/10.1038/s41598-022-06372-8

    Article  Google Scholar 

  17. Peng, Y., Dallas, M.M., Ascencio-Ibáñez, J.T., Hoyer, J.S., Legg, J., Hanley-Bowdoin, L., Grieve, B., Yin, H.: Cassava-TME204-UCBSV multispectral imaging dataset for early detection of virus infection with spatial-spectral machine learning. Zenodo (2021). https://doi.org/10.5281/zenodo.4636968

  18. Cross, G.R., Jain, A.K.: Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5(1), 25–39 (1983). https://doi.org/10.1109/TPAMI.1983.4767341

    Article  Google Scholar 

  19. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29, 2352–2449 (2017). https://doi.org/10.1162/neco_a_00990

    Article  MathSciNet  MATH  Google Scholar 

  20. Szirányi, T., Kriston, A., Majdik, A., Tizedes, L.: Fusion markov random field image segmentation for a time series of remote sensed images. In: Faragó, I., Izsák, F., Simon, P.L. (eds.) Progress in Industrial Mathematics at ECMI 2018, pp. 621–629. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-27550-1_79

    Chapter  Google Scholar 

  21. Patil, A., Rane, M.: Convolutional neural networks: an overview and its applications in pattern recognition. Smart Innov. Syst. Technol. 195, 21–30 (2021). https://doi.org/10.1007/978-981-15-7078-0_3

    Article  Google Scholar 

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  23. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2921–2926 (2017). https://doi.org/10.1109/IJCNN.2017.7966217

  24. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images (2009)

    Google Scholar 

  25. Sahin, H.M., Grieve, B., Yin, H.: Automatic multispectral image classification of plant virus from leaf samples. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds.) Intelligent Data Engineering and Automated Learning – IDEAL 2020: 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part I, pp. 374–384. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-62362-3_33

    Chapter  Google Scholar 

Download references

Acknowledgements

Halil Mertkan Sahin would also like to acknowledge the Scholarship provided by the Ministry of National Education of the Republic of Türkiye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Mertkan Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahin, H.M., Grieve, B., Yin, H. (2023). Combining of Markov Random Field and Convolutional Neural Networks for Hyper/Multispectral Image Classification. In: Quaresma, P., Camacho, D., Yin, H., Gonçalves, T., Julian, V., Tallón-Ballesteros, A.J. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404. Springer, Cham. https://doi.org/10.1007/978-3-031-48232-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48232-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48231-1

  • Online ISBN: 978-3-031-48232-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics