Skip to main content

Neuroimaging in Clinical Geriatric Psychiatry

  • Chapter
  • First Online:
Geriatric Psychiatry

Abstract

Brain imaging has evolved to facilitate our understanding of structural and functional correlates of depressive, psychotic, anxiety, neurocognitive, and other psychiatric disorders encountered in the clinical practice of geriatric psychiatry. The application of brain imaging techniques as diagnostic or therapeutic monitoring tools is still evolving. Today, brain imaging is both a clinical and a research tool. Some imaging modalities have current clinical indications, mainly in ruling out treatable or modifiable illnesses that present with behavioral and/or cognitive symptoms in old age, and some require further validation to improve their predictive value. Clinicians need to use brain imaging tools wisely and in the broader context of various clinical data sources (e.g., history, examination, laboratory studies) to more focally define, explain, and, ultimately, manage clinical syndromes. In this chapter, we provide an overview of currently available neuroimaging modalities, orient clinicians to structural and functional neuroanatomy, provide case examples on how neuroimaging can support the clinical diagnostic process, and offer suggestion on how to use neuroimaging optimally in geriatric psychiatry clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Megabecquerel (MBq) is a measure of radioactive material.

References

  1. Freemon FR. Galen’s ideas on neurological function. J Hist Neurosci. 1994;3(4):263–71.

    Article  CAS  PubMed  Google Scholar 

  2. Simpson D. Phrenology and the neurosciences: contributions of F. J. Gall and J. G. Spurzheim. ANZ J Surg. 2005;75(6):475–82.

    Article  PubMed  Google Scholar 

  3. McKinney W. History of neuroimaging American Society of Neuroimaging website. American Society of Neuroimaging; 1997. http://www.asnweb.org/i4a/pages/index.cfm?pageid=3334.

    Google Scholar 

  4. Rinck PA. The history of MRI. In: Magnetic resonance in medicine: a critical introduction. 12th ed. Norderstedt: BoD GmbH; 2022.

    Google Scholar 

  5. Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology. 2013;80(10):952–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burhan AM, Marlatt NM, Palaniyappan L, Anazodo UC, Prato FS. Role of hybrid brain imaging in neuropsychiatric disorders. Diagnostics (Basel). 2015;5(4):577–614.

    Article  CAS  PubMed  Google Scholar 

  7. Brodmann K. Brodmann’s: localisation in the cerebral cortex. New York: Springer Science & Business Media; 2007.

    Google Scholar 

  8. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed MR, Zhang Y, Feng Z, Lo B, Inan O, Liao H. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects in IEEE reviews. Biomed Eng. 2019;12:19–33.

    Google Scholar 

  10. Mateos-Pérez J, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, et al. Structural neuroimaging as clinical predictor: a review of machine learning applications. Neuroimage Clin. 2018;20:506–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giorgio J, Jagust WJ, Baker S, et al. A robust and interpretable machine learning approach using multimodal biological data to predict future pathological tau accumulation. Nat Commun. 2022;1887:13.

    Google Scholar 

  12. Williamson PC, Allman JM. A framework for interpreting functional networks in schizophrenia. Front Hum Neurosci. 2012;6:184.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506.

    Article  PubMed  Google Scholar 

  14. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(7):4259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fox KC, Spreng RN, Ellamil M, Andrews-Hanna JR, Christoff K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage. 2015;111:611–21.

    Article  PubMed  Google Scholar 

  17. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, et al. A core system for the implementation of task sets. Neuron. 2006;50(5):799–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Downar J, Blumberger DM, Daskalakis ZJ. The neural crossroads of psychiatric illness: an emerging target for brain stimulation. Trends Cogn Sci. 2016;20(2):107–20.

    Article  PubMed  Google Scholar 

  22. Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187–221.

    Article  PubMed  Google Scholar 

  23. Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol. 2002;23(8):1327–33.

    PubMed  PubMed Central  Google Scholar 

  24. Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, et al. Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol. 1998;55(2):169–79.

    Article  CAS  PubMed  Google Scholar 

  25. Burgmans S, van Boxtel MP, Smeets F, Vuurman EF, Gronenschild EH, Verhey FR, et al. Prefrontal cortex atrophy predicts dementia over a six-year period. Neurobiol Aging. 2009;30(9):1413–9.

    Article  CAS  PubMed  Google Scholar 

  26. Burgmans S, van Boxtel MP, Vuurman EF, Smeets F, Gronenschild EH, Uylings HB, et al. The prevalence of cortical gray matter atrophy may be overestimated in the healthy aging brain. Neuropsychology. 2009;23(5):541–50.

    Article  PubMed  Google Scholar 

  27. Meyer JS, Kawamura J, Terayama Y. White matter lesions in the elderly. J Neurol Sci. 1992;110(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  28. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Leeuw FE, de Groot JC, Bots ML, Witteman JC, Oudkerk M, Hofman A, van Gijn J, Breteler MM. Carotid atherosclerosis and cerebral white matter lesions in a population based magnetic resonance imaging study. J Neurol. 2000;247(4):5.

    Article  Google Scholar 

  30. Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovasc Health Study. Stroke. 1996;27(8):1274–82.

    Article  PubMed  Google Scholar 

  31. Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol. 1988;151(3):559–66.

    Article  CAS  PubMed  Google Scholar 

  32. Spilt A, Goekoop R, Westendorp RG, Blauw GJ, de Craen AJ, van Buchem MA. Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study. AJNR Am J Neuroradiol. 2006;27(9):1964–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fazekas FKR, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):6.

    Article  Google Scholar 

  34. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173–96.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Walhovd KB, Fjell AM, Espeseth T. Cognitive decline and brain pathology in aging--need for a dimensional, lifespan and systems vulnerability view. Scand J Psychol. 2014;55(3):244–54.

    Article  PubMed  Google Scholar 

  36. Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012;16(5):292–305.

    Article  PubMed  Google Scholar 

  37. Sala-Llonch R, Bartres-Faz D, Junque C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:663.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bushong SC. Radiologic science for technologists. 9th ed. St. Louis: Mosby; 2009. p. 704.

    Google Scholar 

  39. Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258(1):236–42.

    Article  PubMed  Google Scholar 

  40. Ai T, Morelli JN, Hu X, Hao D, Goerner FL, Ager B, et al. A historical overview of magnetic resonance imaging, focusing on technological innovations. Investig Radiol. 2012;47(12):725–41.

    Article  CAS  Google Scholar 

  41. Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, et al. Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia. 2008;46(6):1648–56.

    Article  PubMed  Google Scholar 

  42. Caciagli L, Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Functional network alterations and their structural substrate in drug-resistant epilepsy. Front Neurosci. 2014;8:411.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review. J Cereb Blood Flow Metab. 2016;36(5):842–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anazodo UC, Thiessen JD, Ssali T, Mandel J, Gunther M, Butler J, et al. Feasibility of simultaneous whole-brain imaging on an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method. Front Neurosci. 2014;8:434.

    PubMed  Google Scholar 

  45. Cha YH, Jog MA, Kim YC, Chakrapani S, Kraman SM, Wang DJ. Regional correlation between resting state FDG PET and pCASL perfusion MRI. J Cereb Blood Flow Metab. 2013;33(12):1909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Newberg AB, Wang J, Rao H, Swanson RL, Wintering N, Karp JS, et al. Concurrent CBF and CMRGlc changes during human brain activation by combined fMRI-PET scanning. NeuroImage. 2005;28(2):500–6.

    Article  PubMed  Google Scholar 

  47. Chen Y, Wolk DA, Reddin JS, Korczykowski M, Martinez PM, Musiek ES, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology. 2011;77(22):1977–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Musiek ES, Chen Y, Korczykowski M, Saboury B, Martinez PM, Reddin JS, et al. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement. 2012;8(1):51–9.

    Article  PubMed  Google Scholar 

  49. Anazodo UC, Shoemaker JK, Suskin N, St Lawrence KS. An investigation of changes in regional gray matter volume in cardiovascular disease patients, pre and post cardiovascular rehabilitation. Neuroimage Clin. 2013;3:388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen JJ, Rosas HD, Salat DH. The relationship between cortical blood flow and sub-cortical white-matter health across the adult age span. PLoS One. 2013;8(2):e56733.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29(48):15223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. Alzheimer’s disease neuroimaging I. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, et al. Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex. 2014;24(4):919–34.

    Article  PubMed  Google Scholar 

  54. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC. Alzheimer’s disease neuroimaging I. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kety SS, Harmel MH, et al. Nitrous oxide method for measurement of human cerebral blood flow; experimental evaluation of fundamental assumptions. Fed Proc. 1947;6(1 Pt 2):142.

    CAS  PubMed  Google Scholar 

  56. Smith GS, Workman CI, Protas H, et al. Positron emission tomography imaging of serotonin degeneration and beta-amyloid deposition in late-life depression evaluated with multi-modal partial least squares. Transl Psychiatry. 2021;11:473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang L, Hu S, Shao T, Hou L, Zhang S, et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B. 2021;11(2):373–93.

    Article  CAS  PubMed  Google Scholar 

  58. Cakmak J, Liu L, Poirier S, Schaefer B, et al. The functional and structural associations of aberrant microglial activity in major depressive disorder. J Psychiatry Neurosci. 2022;47(3):E197–208.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57(8):1316–22.

    Article  CAS  PubMed  Google Scholar 

  60. Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53(1):154–63.

    Article  CAS  PubMed  Google Scholar 

  61. Burhan AM, Anazodo UC, Marlatt NM, Palaniyappan L, Blair M, Finger E. Schizophrenia syndrome due to C9ORF72 mutation case report: a cautionary tale and role of hybrid brain imaging! BMC Psychiatry. 2021;21(1):331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takalloobanafshi G, Kukreja A, Hicks J. Historical efforts to develop 99mTc-based amyloid plaque targeting radiotracers. Front Nucl Med. 2022;2:2.

    Article  Google Scholar 

  63. Huh Y, Yang J, Dim O, Cui Y, Tao W, Huang Q, Gullberg G, Seo Y. Evaluation of a variable-aperture full-ring SPECT system using large-area pixelated CZT modules: a simulation study for brain SPECT applications. Med Phys. 2021;48(5):2301–14.

    Article  PubMed  Google Scholar 

  64. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

    Article  PubMed  Google Scholar 

  65. Burhan AM, Bartha R, Bocti C, Borrie M, Laforce R, Rosa-Neto P, et al. Role of emerging neuroimaging modalities in patients with cognitive impairment: a review from the Canadian consensus conference on the diagnosis and treatment of dementia 2012. Alzheimers Res Ther. 2013;5(Suppl 1):S4.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Brisson M, Brodeur C, Létourneau-Guillon L, Masellis M, Stoessl J, Tamm A, Zukotynski K, Ismail Z, Gauthier S, Rosa-Neto P, Soucy JP. CCCDTD5: Clinical role of neuroimaging and liquid biomarkers in patients with cognitive impairment. Alzheimers Dement. 2020;6:e12098.

    Article  Google Scholar 

  67. Filippi M, Agosta F, Barkhof F, Dubois B, Fox NC, Frisoni GB, et al. EFNS task force: the use of neuroimaging in the diagnosis of dementia. Eur J Neurol. 2012;19(12):e131–40;1487–501.

    Article  CAS  PubMed  Google Scholar 

  68. Goodglass H, Kaplan E. The assessment of aphasia and related disorders, vol. vii, 80. Philadelphia: Lea & Febiger; 1972. p. 28.

    Google Scholar 

  69. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  70. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

    Article  PubMed  Google Scholar 

  71. Kluger A, Ferris SH, Golomb J, Mittelman MS, Reisberg B. Neuropsychological prediction of decline to dementia in nondemented elderly. J Geriatr Psychiatry Neurol. 1999;12(4):168–79.

    Article  CAS  PubMed  Google Scholar 

  72. Tombaugh TN. Trail making test a and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–14. https://doi.org/10.1016/S0887-6177(03)00039-8.

    Article  PubMed  Google Scholar 

  73. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49.

    Article  PubMed  Google Scholar 

  74. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sachdev P, Kalaria R, O'Brien J, Skoog I, Alladi S, Black SE, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: diagnosis and treatment. Curr Neurol Neurosci Rep. 2008;8(5):371–6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bucks RS, Olaithe M, Eastwood P. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology. 2013;18(1):61–70.

    Article  PubMed  Google Scholar 

  78. Hejl A, Hogh P, Waldemar G. Potentially reversible conditions in 1000 consecutive memory clinic patients. J Neurol Neurosurg Psychiatry. 2002;73(4):390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kennedy PG. Viral encephalitis: causes, differential diagnosis, and management. J Neurol Neurosurg Psychiatry. 2004;75(Suppl 1):i10–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gauthier S, Patterson C, Chertkow H, Gordon M, Herrmann N, Rockwood K, et al. Recommendations of the 4th Canadian consensus conference on the diagnosis and treatment of dementia (CCCDTD4). Can Geriatr J. 2012;15(4):120–6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JC, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):249–58.

    Article  CAS  PubMed  Google Scholar 

  82. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.

    Article  CAS  PubMed  Google Scholar 

  83. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, et al. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol. 2015;36(4):623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer M. Burhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burhan, A.M., Soni, N., Kuo, M., Anazodo, U.C., Soucy, JP. (2024). Neuroimaging in Clinical Geriatric Psychiatry. In: Hategan, A., Bourgeois, J.A., Hirsch, C.H., Giroux, C. (eds) Geriatric Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-031-47802-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47802-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47801-7

  • Online ISBN: 978-3-031-47802-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics