Skip to main content

Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

MRI reconstruction techniques based on deep learning have led to unprecedented reconstruction quality especially in highly accelerated settings. However, deep learning techniques are also known to fail unexpectedly and hallucinate structures. This is particularly problematic if reconstructions are directly used for downstream tasks such as real-time treatment guidance or automated extraction of clinical parameters (e.g. via segmentation). Well-calibrated uncertainty quantification will be a key ingredient for safe use of this technology in clinical practice. In this paper we propose a novel probabilistic reconstruction technique (PHiRec) building on the idea of conditional hierarchical variational autoencoders. We demonstrate that our proposed method produces high-quality reconstructions as well as uncertainty quantification that is substantially better calibrated than several strong baselines. We furthermore demonstrate how uncertainties arising in the MR reconstruction can be propagated to a downstream segmentation task, and show that PHiRec also allows well-calibrated estimation of segmentation uncertainties that originated in the MR reconstruction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code for PHiRec is available at https://github.com/paulkogni/MR-Recon-UQ.

References

  1. Angelopoulos, A.N., et al.: Image-to-image regression with distribution-free uncertainty quantification and applications in imaging, February 2022. arXiv arXiv:2202.05265 [cs, eess, q-bio, stat]

  2. Baumgartner, C.F., et al.: Phiseg: Capturing uncertainty in medical image segmentation (2019). https://doi.org/10.48550/ARXIV.1906.04045, arXiv:1906.04045

  3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning, pp. 1613–1622. PMLR (2015)

    Google Scholar 

  4. Calivá, F., et al.: Breaking speed limits with simultaneous ultra-fast MRI reconstruction and tissue segmentation. In: Medical Imaging with Deep Learning, pp. 94–110. PMLR (2020)

    Google Scholar 

  5. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2022)

    Article  Google Scholar 

  6. Desai, A.D., et al.: SKM-TEA: a dataset for accelerated MRI reconstruction with dense image labels for quantitative clinical evaluation (2022)

    Google Scholar 

  7. Gottschling, N.M., Antun, V., Adcock, B., Hansen, A.C.: The troublesome kernel: why deep learning for inverse problems is typically unstable. arXiv preprint arXiv:2001.01258 (2020)

  8. Hauptmann, A., Arridge, S., Lucka, F., Muthurangu, V., Steeden, J.A.: Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magn. Reson. Med. 81(2), 1143–1156 (2019)

    Article  Google Scholar 

  9. Hepp, T., Gatidis, S., Hammernik, K., Küstner, T.: Uncertainty estimation via ensembling for deep learning-based MR image reconstruction. In: ISMRM, vol. 685 (2022)

    Google Scholar 

  10. Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018)

    Article  Google Scholar 

  11. Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A.G., Tamir, J.I.: Robust compressed sensing MRI with deep generative priors, December 2021. arXiv arXiv:2108.01368 [cs, math, stat]

  12. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017). https://doi.org/10.1109/TIP.2017.2713099, http://ieeexplore.ieee.org/document/7949028/

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  14. Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation for linear inverse problems. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7549–7558 (2020)

    Google Scholar 

  15. Kohl, S.A.A., et al.: A hierarchical probabilistic u-net for modeling multi-scale ambiguities (2019)

    Google Scholar 

  16. Kohl, S.A.A., et al.: A probabilistic u-net for segmentation of ambiguous images (2018). https://doi.org/10.48550/ARXIV.1806.05034, https://arxiv.org/abs/1806.05034

  17. Laves, M.H., Ihler, S., Fast, J.F., Kahrs, L.A., Ortmaier, T.: Recalibration of aleatoric and epistemic regression uncertainty in medical imaging. arXiv preprint arXiv:2104.12376 (2021)

  18. Morshuis, J.N., Gatidis, S., Hein, M., Baumgartner, C.F.: Adversarial robustness of MR image reconstruction under realistic perturbations. In: Haq, N., Johnson, P., Maier, A., Qin, C., Würfl, T., Yoo, J. (eds.) Machine Learning for Medical Image Reconstruction, vol. 13587, pp. 24–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17247-2_3

    Chapter  Google Scholar 

  19. Narnhofer, D., Effland, A., Kobler, E., Hammernik, K., Knoll, F., Pock, T.: Bayesian uncertainty estimation of learned variational MRI reconstruction. IEEE Trans. Med. Imaging 41(2), 279–291 (2022). https://doi.org/10.1109/TMI.2021.3112040

    Article  Google Scholar 

  20. Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., Willett, R.: Deep learning techniques for inverse problems in imaging, May 2020. arXiv arXiv:2005.06001 [cs, eess, stat]

  21. Paszke, A., et al.: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  22. Peng, C., Guo, P., Zhou, S.K., Patel, V., Chellappa, R.: Towards performant and reliable undersampled MR reconstruction via diffusion model sampling (2022). https://doi.org/10.48550/ARXIV.2203.04292, arXiv:2203.04292

  23. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. Off. J. Int. Soci. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  24. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  25. Schlemper, J., et al.: Bayesian deep learning for accelerated MR image reconstruction. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 64–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00129-2_8

    Chapter  Google Scholar 

  26. Schlemper, J., et al.: Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 259–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_30

    Chapter  Google Scholar 

  27. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  28. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  29. Tezcan, K.C., Karani, N., Baumgartner, C.F., Konukoglu, E.: Sampling possible reconstructions of undersampled acquisitions in MR imaging with a deep learned prior. IEEE Trans. Med. Imaging 41(7), 1885–1896 (2022)

    Article  Google Scholar 

  30. Tolpadi, A.A., et al.: K2S challenge: from undersampled k-space to automatic segmentation. Bioengineering 10(2), 267 (2023)

    Article  Google Scholar 

  31. Waddington, D.E.J., et al.: On real-time image reconstruction with neural networks for MRI-guided radiotherapy, May 2022. arXiv:2202.05267 [physics]

  32. Xie, Y., Li, Q.: Measurement-conditioned denoising diffusion probabilistic model for under-sampled medical image reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, vol. 13436, pp. 655–664. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_62

    Chapter  Google Scholar 

  33. Zeng, G., et al.: A review on deep learning MRI reconstruction without fully sampled k-space. BMC Med. Imaging 21(1), 195 (2021). https://doi.org/10.1186/s12880-021-00727-9

    Article  Google Scholar 

  34. Zhang, C., Barbano, R., Jin, B.: Conditional variational autoencoder for learned image reconstruction. Comput. 9(11), 114 (2021)

    Google Scholar 

  35. Zhou, Z., et al.: Parallel imaging and convolutional neural network combined fast MR image reconstruction: applications in low-latency accelerated real-time imaging. Med. Phys. 46(8), 3399–3413 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC number 2064/1 - Project number 390727645. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Paul Fischer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fischer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2475 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer, P., Thomas, K., Baumgartner, C.F. (2023). Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics