Skip to main content

TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14291))

Abstract

The volume of a brain lesion (e.g. infarct or tumor) is a powerful indicator of patient prognosis and can be used to guide the therapeutic strategy. Lesional volume estimation is usually performed by segmentation with deep convolutional neural networks (CNN), currently the state-of-the-art approach. However, to date, few work has been done to equip volume segmentation tools with adequate quantitative predictive intervals, which can hinder their usefulness and acceptation in clinical practice. In this work, we propose TriadNet, a segmentation approach relying on a multi-head CNN architecture, which provides both the lesion volumes and the associated predictive intervals simultaneously, in less than a second. We demonstrate its superiority over other solutions on BraTS 2021, a large-scale MRI glioblastoma image database. Our implementation of TriadNet is available at https://github.com/benolmbrt/TriadNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511 (2021)

  2. Baid, U., Ghodasara, S., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  3. Baris, M.M., Celik, A.O., et al.: Role of mass effect, tumor volume and peritumoral edema volume in the differential diagnosis of primary brain tumor and metastasis. Clin. Neurol. Neurosurg. 148, 67–71 (2016)

    Article  Google Scholar 

  4. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  5. Contador, J., Pérez-Millán, A., et al.: Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer’s disease. NeuroImage Clin. 32, 102804 (2021)

    Google Scholar 

  6. Eaton-Rosen, Z., Varsavsky, T., Ourselin, S., Cardoso, M.J.: As easy as 1, 2...4? Uncertainty in counting tasks for medical imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 356–364. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_39

    Chapter  Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, vol. 48, pp. 1050–1059 (2016)

    Google Scholar 

  8. Ghoneem, A., Osborne, M.T., et al.: Association of socioeconomic status and infarct volume with functional outcome in patients with ischemic stroke. JAMA Netw. Open 5(4), e229178–e229178 (2022)

    Article  Google Scholar 

  9. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  10. Hesamian, M.H., Jia, W., et al.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582–596 (2019)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  12. Kivaranovic, D., Johnson, K.D., Leeb, H.: Adaptive, distribution-free prediction intervals for deep networks. In: International Conference on Artificial Intelligence and Statistics, pp. 4346–4356 (2020)

    Google Scholar 

  13. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural. Inf. Process. Syst. 30, 6402–6413 (2017)

    Google Scholar 

  14. Mattiesing, R.M., Gentile, G., et al.: The spatio-temporal relationship between white matter lesion volume changes and brain atrophy in clinically isolated syndrome and early multiple sclerosis. NeuroImage Clin. 36, 103220 (2022)

    Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  16. Oktay, O., Schlemper, J., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (MIDL) (2018)

    Google Scholar 

  17. Pearce, T., Brintrup, A., et al.: High-quality prediction intervals for deep learning: a distribution-free, ensembled approach. In: International Conference on Machine Learning, pp. 4075–4084 (2018)

    Google Scholar 

  18. Pérez-García, F., Sparks, R., Ourselin, S.: Torchio: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Programs Biomed. 208, 106236 (2021)

    Article  Google Scholar 

  19. Roca, P., Attye, A., et al.: Artificial intelligence to predict clinical disability in patients with multiple sclerosis using flair MRI. Diagn. Interv. Imaging 101(12), 795–802 (2020)

    Article  Google Scholar 

  20. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  21. Srivastava, N., Hinton, G., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  22. Tagasovska, N., Lopez-Paz, D.: Single-model uncertainties for deep learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Lambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lambert, B., Forbes, F., Doyle, S., Dojat, M. (2023). TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics