Skip to main content

Uncertainty Estimation in Liver Tumor Segmentation Using the Posterior Bootstrap

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

Deep learning-based medical image segmentation is widely used and has achieved the state-of-the-art segmentation performance, in which nnU-Net is a particularly successful pipeline due to its pre-processing and auto-configuration features. However, the output predicted probabilities from neural networks are generally not properly calibrated and don’t necessarily indicate segmentation errors, which are problematic for clinical use. Bayesian deep learning is a promising way to address these problems by improving the probability calibration and error localisation ability. In this paper, we proposed a novel Bayesian approach based on posterior bootstrap theory to sample the neural network parameters from a posterior distribution. Based on nnU-Net, we implemented our method and other Bayesian approaches, and evaluated their uncertainty estimation quality. The results show that the proposed posterior bootstrap method provides improvement on uncertainty estimation with equivalent segmentation performance. The proposed method is easy to implement, compatible with any deep learning-based image segmentation pipeline, and doesn’t require additional hyper-parameter tuning, enabling it to totally preserve nnU-Net’s auto-configuration feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 4128 (2022)

    Article  Google Scholar 

  2. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  3. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  4. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  5. Filipović, M., Dautremer, T., Comtat, C., Stute, S., Barat, É.: Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap. Phys. Med. Biol. 66(12), 125018 (2021)

    Article  Google Scholar 

  6. Fong, E., Lyddon, S., Holmes, C.: Scalable nonparametric sampling from multimodal posteriors with the posterior bootstrap. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 1952–1962. PMLR (2019)

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol. 48, pp. 1050–1059. ICML’16, JMLR.org (2016)

    Google Scholar 

  8. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1321–1330. ICML’17, JMLR.org (2017)

    Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. Jungo, A., Balsiger, F., Reyes, M.: Analyzing the quality and challenges of uncertainty estimations for brain tumor segmentation. Front. Neurosci. 14, 282 (2020)

    Article  Google Scholar 

  11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6405–6416. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  12. Lyddon, S., Walker, S., Holmes, C.: Nonparametric learning from Bayesian models with randomized objective functions. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 2075–2085. NIPS’18, Curran Associates Inc., Red Hook, NY, USA (2018)

    Google Scholar 

  13. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. Proc. AAAI Conf. Artif. Intell. 2015, 2901–2907 (2015)

    Google Scholar 

  14. Newton, M.A., Polson, N.G., Xu, J.: Weighted Bayesian bootstrap for scalable posterior distributions. Can. J. Stat. 49(2), 421–437 (2021)

    Article  MathSciNet  Google Scholar 

  15. Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 14003–14014. Curran Associates Inc. (2019)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Rubin, D.B.: The Bayesian bootstrap. Ann. Stat. 9(1), 130–134 (1981)

    Article  MathSciNet  Google Scholar 

  18. Wilson, A.G., Izmailov, P.: Bayesian deep learning and a probabilistic perspective of generalization. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4697–4708. Curran Associates, Inc. (2020)

    Google Scholar 

  19. Zhao, Y., Yang, C., Schweidtmann, A., Tao, Q.: Efficient Bayesian uncertainty estimation for nnU-Net. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 535–544. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_51

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishuai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Nuyts, J., Filipovic, M. (2023). Uncertainty Estimation in Liver Tumor Segmentation Using the Posterior Bootstrap. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics