Skip to main content

Confidence-Aware and Self-supervised Image Anomaly Localisation

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

Universal anomaly detection still remains a challenging problem in machine learning and medical image analysis. It is possible to learn an expected distribution from a single class of normative samples, e.g., through epistemic uncertainty estimates, auto-encoding models, or from synthetic anomalies in a self-supervised way. The performance of self-supervised anomaly detection approaches is still inferior compared to methods that use examples from known unknown classes to shape the decision boundary. However, outlier exposure methods often do not identify unknown unknowns. Here we discuss an improved self-supervised single-class training strategy that supports the approximation of probabilistic inference with loosen feature locality constraints. We show that up-scaling of gradients with histogram-equalised images is beneficial for recently proposed self-supervision tasks. Our method is integrated into several out-of-distribution (OOD) detection models and we show evidence that our method outperforms the state-of-the-art on various benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Baugh, M.: PIE-torch. www.github.com/matt-baugh/pytorch-poisson-image-editing

  4. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  5. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Bayesian skip-autoencoders for unsupervised hyperintense anomaly detection in high resolution brain MRI. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1905–1909. IEEE (2020)

    Google Scholar 

  6. Cao, T., Huang, C.W., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of distribution detection. arXiv preprint arXiv:2007.04250 (2020)

  7. Chen, X., Pawlowski, N., Rajchl, M., Glocker, B., Konukoglu, E.: Deep generative models in the real-world: an open challenge from medical imaging. arXiv preprint arXiv:1806.05452 (2018)

  8. Fang, Z., Li, Y., Lu, J., Dong, J., Han, B., Liu, F.: Is out-of-distribution detection learnable? arXiv preprint arXiv:2210.14707 (2022)

  9. Guan, S., Loew, M.: Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks. J. Med. Imaging 6(3), 031411 (2019)

    Article  Google Scholar 

  10. Guo, X., Gichoya, J.W., Purkayastha, S., Banerjee, I.: CVAD: a generic medical anomaly detector based on cascade VAE. arXiv preprint arXiv:2110.15811 (2021)

  11. Han, C., et al.: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection. In: 2019 International Conference on 3D Vision (3DV), pp. 729–737. IEEE (2019)

    Google Scholar 

  12. Henaff, O.: Data-efficient image recognition with contrastive predictive coding. In: International Conference on Machine Learning, pp. 4182–4192. PMLR (2020)

    Google Scholar 

  13. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. arXiv preprint arXiv:1906.12340 (2019)

  14. Johnson, A., et al.: MIMIC-CXR-JPG-chest radiographs with structured labels (2019)

    Google Scholar 

  15. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)

    Google Scholar 

  16. Li, X., Lu, Y., Desrosiers, C., Liu, X.: Out-of-distribution detection for skin lesion images with deep isolation forest. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 91–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_10

    Chapter  Google Scholar 

  17. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

  18. Mohseni, S., Pitale, M., Yadawa, J., Wang, Z.: Self-supervised learning for generalizable out-of-distribution detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5216–5223 (2020)

    Google Scholar 

  19. Nakao, T., Hanaoka, S., Nomura, Y., Hayashi, N., Abe, O.: Anomaly detection in chest 18F-FDG PET/CT by Bayesian deep learning. Japan. J. Radiol., 1–10 (2022)

    Google Scholar 

  20. Pawlowski, N., et al.: Unsupervised lesion detection in brain CT using Bayesian convolutional autoencoders (2018)

    Google Scholar 

  21. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  22. Schlüter, H.M., Tan, J., Hou, B., Kainz, B.: Self-supervised out-of-distribution detection and localization with natural synthetic anomalies (NSA). arXiv preprint arXiv:2109.15222 (2021)

  23. Seeböck, P., et al.: Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal oct. IEEE Trans. Med. Imaging 39(1), 87–98 (2019)

    Article  Google Scholar 

  24. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)

    Article  Google Scholar 

  25. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign patch interpolation. arXiv preprint arXiv:2011.04197 (2020)

  26. Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., Kainz, B.: Detecting outliers with poisson image interpolation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 581–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_56

    Chapter  Google Scholar 

  27. Tschuchnig, M.E., Gadermayr, M.: Anomaly detection in medical imaging-a mini review. Data Sci.-Anal. Appl., 33–38 (2022)

    Google Scholar 

  28. Venkatakrishnan, A.R., Kim, S.T., Eisawy, R., Pfister, F., Navab, N.: Self-supervised out-of-distribution detection in brain CT scans. arXiv preprint arXiv:2011.05428 (2020)

  29. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. arXiv preprint arXiv:2203.04306 (2022)

  30. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)

    Article  Google Scholar 

  31. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018)

  32. Zhao, H., et al.: Anomaly detection for medical images using self-supervised and translation-consistent features. IEEE Trans. Med. Imaging 40(12), 3641–3651 (2021)

    Article  Google Scholar 

  33. Zhou, L., Deng, W., Wu, X.: Unsupervised anomaly localization using VAE and beta-VAE. arXiv preprint arXiv:2005.10686 (2020)

Download references

Acknowledgements

The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR projects b143dc and b180dc. NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) - 440719683. Additional support was also received by the ERC - project MIA-NORMAL 101083647, DFG KA 5801/2-1, INST 90/1351-1 and by the state of Bavaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna P. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

P. Müller, J., Baugh, M., Tan, J., Dombrowski, M., Kainz, B. (2023). Confidence-Aware and Self-supervised Image Anomaly Localisation. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics