Skip to main content

Glaucoma Progression Detection and Humphrey Visual Field Prediction Using Discriminative and Generative Vision Transformers

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14096))

Included in the following conference series:

  • 567 Accesses

Abstract

Glaucoma is one of the top causes of blindness worldwide. Assessing its progression is critical to determine potential visual impairment and to design sound treatment plans. Standard automated perimetry tests, commonly known as visual field (VF) tests, are clinically used to evaluate the state of functional vision. To provide an accurate and automatic diagnostic tool for clinical decision making in glaucoma progression, we utilize the predictive power of artificial intelligence (AI) and propose two vision transformer (ViT)-based deep learning (DL) networks. First, we optimize a spatiotemporal ViT to classify a subject’s rate of glaucoma progression (GP) using only 3 baseline VFs; we explore threshold mean deviation (MD) rate of change from −0.3 to −1.5 dB/year and achieve up to 89% GP detection accuracy. Second, we develop a VF-to-VF generation architecture via a diffusion model with a ViT backbone. The model predicts future VFs with Pointwise Mean Absolute Error (PMAE) as low as 2.15 dB for mild VF deficits and is the first to extend VF prediction up to 10 years into the future. Our models are trained and validated on our ‘62K+’ dataset, the largest available of VFs to-date including at-risk, minority populations, thus ensuring our models’ generalizability. We establish our computational methods and compare testing results on the publicly available UWHVF dataset. In short, our study utilizes novel AI methods for predicting future rates and patterns of glaucoma progression in order to expedite timely treatment for better patient quality of life. The code is available at https://github.com/AI4VSLab/GP-Detection-VF-Prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison, K., Patel, D., Alabi, O.: Epidemiology of glaucoma: the past, present, and predictions for the future. Cureus 12(11), e11686 (2020)

    Google Scholar 

  2. Anderson, R.S.: The psychophysics of glaucoma: improving the structure/function relationship. Prog. Retin. Eye Res. 25(1), 79–97 (2006)

    Article  Google Scholar 

  3. Wollstein, G., et al.: Optical coherence tomography (oct) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am. J. Ophthalmol. 138(2), 218–225 (2004)

    Article  Google Scholar 

  4. Saeedi, O., et al.: Development and comparison of machine learning algorithms to determine visual field progression. Transl. Vision Sci. Technol. 10(7), 27–27 (2021)

    Article  Google Scholar 

  5. Yousefi, S., et al.: Detection of longitudinal visual field progression in glaucoma using machine learning. Am. J. Ophthalmol. 193, 71–79 (2018)

    Article  Google Scholar 

  6. Lazaridis, G., et al.: Predicting visual fields from optical coherence tomography via an ensemble of deep representation learners. Am. J. Ophthalmol. 238, 52–65 (2022)

    Article  Google Scholar 

  7. Wen, J.C., et al.: Forecasting future humphrey visual fields using deep learning. PLoS ONE 14(4), e0214875 (2019)

    Article  Google Scholar 

  8. Montesano, G., Chen, A., Lu, R., Lee, C.S., Lee, A.Y.: UWHVF: a real-world, open source dataset of perimetry tests from the humphrey field analyzer at the university of washington. Transl. Vision Sci. Technol. 11(1), 2–2 (2022)

    Article  Google Scholar 

  9. Vaswani, A.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  11. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.): ECCV 2014, Part I. LNCS, vol. 8689. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1

    Book  Google Scholar 

  13. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)

    Google Scholar 

  14. Caprioli, J., et al.: A method to measure and predict rates of regional visual field decay in glaucoma. Invest. Ophthalmol. Visual Sci. 52(7), 4765–4773 (2011)

    Article  Google Scholar 

  15. Yang, X., Shih, S.-M., Fu, Y., Zhao, X., Ji,, S.: Your vit is secretly a hybrid discriminative-generative diffusion model. arXiv preprint arXiv:2208.07791 (2022)

  16. Bao, F., Li, C., Cao, Y., Zhu, J.: All are worth words: a vit backbone for score-based diffusion models. arXiv preprint arXiv:2209.12152, 2022

  17. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  18. Müller-Franzes, G., et al.: Diffusion probabilistic models beat GANs on medical images. arXiv preprint arXiv:2212.07501 (2022)

  19. Mills, R.P., et al.: Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease. Am. J. Ophthalmol. 141(1), 24–30 (2006)

    Article  Google Scholar 

  20. Jackson, A.B., et al.: Fast progressors in glaucoma: Prevalence based on global and central visual field loss. Ophthalmology 130, 462–468 (2023)

    Article  Google Scholar 

  21. Saunders, L.J., Medeiros, F.A., Weinreb, R.N., Zangwill, L.M.: What rates of glaucoma progression are clinically significant? Expert Rev. Ophthalmol. 11(3), 227–234 (2016)

    Article  Google Scholar 

  22. Tielsch, J.M., Sommer, A., Katz, J., Royall, R.M., Quigley, H.A., Javitt, J.: Racial variations in the prevalence of primary open-angle glaucoma: the baltimore eye survey. JAMA 266(3), 369–374 (1991)

    Article  Google Scholar 

  23. Allison, K., Patel, D.G., Greene, L.: Racial and ethnic disparities in primary open-angle glaucoma clinical trials: a systematic review and meta-analysis. JAMA Netw. Open 4(5), e218348–e218348 (2021)

    Article  Google Scholar 

  24. Sekimitsu, S., Zebardast, N.: Glaucoma and machine learning: a call for increased diversity in data. Ophthalmol. Glaucoma 4(4), 339–342 (2021)

    Article  Google Scholar 

  25. Khan, S.M., et al.: A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digital Health 3(1), e51–e66 (2021)

    Article  MathSciNet  Google Scholar 

  26. Lee, E.B., Wang, S.Y., Chang, R.T.: Interpreting deep learning studies in glaucoma: unresolved challenges. Asia-Pacific J. Ophthalmol. 10(3), 261–267 (2021)

    Article  Google Scholar 

  27. Mehta, P., et al.: Automated detection of glaucoma with interpretable machine learning using clinical data and multimodal retinal images. Am. J. Ophthalmol. 231, 154–169 (2021)

    Article  Google Scholar 

  28. Phene, S., et al.: Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs. Ophthalmology 126(12), 1627–1639 (2019)

    Article  Google Scholar 

  29. Shin, J., Kim, S., Kim, J., Park, K.: Visual field inference from optical coherence tomography using deep learning algorithms: a comparison between devices. Transl. Vision Sci. Technol. 10(7), 4–4 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jeffrey M. Liebmann, Dr. George A. Cioffi, and Dr. Aaki G. Shukla for their guidance on clinical issues related to GP. This work was supported in part by an Unrestricted Grant from Research to Prevent Blindness awarded to Columbia Ophthalmology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Tian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Zang, M., Sharma, A., Gu, S.Z., Leshno, A., Thakoor, K.A. (2023). Glaucoma Progression Detection and Humphrey Visual Field Prediction Using Discriminative and Generative Vision Transformers. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44013-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44012-0

  • Online ISBN: 978-3-031-44013-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics