Skip to main content

Adapting Segment Anything Model (SAM) for Retinal OCT

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14096))

Included in the following conference series:

Abstract

The Segment Anything Model (SAM) has gained significant attention in the field of image segmentation due to its impressive capabilities and prompt-based interface. While SAM has already been extensively evaluated in various domains, its adaptation to retinal OCT scans remains unexplored. To bridge this research gap, we conduct a comprehensive evaluation of SAM and its adaptations on a large-scale public dataset of OCTs from RETOUCH challenge. Our evaluation covers diverse retinal diseases, fluid compartments, and device vendors, comparing SAM against state-of-the-art retinal fluid segmentation methods. Through our analysis, we showcase adapted SAM’s efficacy as a powerful segmentation model in retinal OCT scans, although still lagging behind established methods in some circumstances. The findings highlight SAM’s adaptability and robustness, showcasing its utility as a valuable tool in retinal OCT image analysis and paving the way for further advancements in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolopoulos, S., Ciller, C., Sznitman, R., De Zanet, S.: Simultaneous classification and segmentation of cysts in retinal oct. In: Proceedings of MICCAI Retinal OCT Fluid Challenge (RETOUCH), pp. 22–29 (2017)

    Google Scholar 

  2. Bogunovic, H., et al.: RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans. Med. Imaging 38(8), 1858–1874 (2019). https://doi.org/10.1109/TMI.2019.2901398

    Article  Google Scholar 

  3. Campochiaro, P.A., Aiello, L.P., Rosenfeld, P.J.: Anti-vascular endothelial growth factor agents in the treatment of retinal disease: from bench to bedside. Ophthalmology 123(10), S78–S88 (2016). https://doi.org/10.1016/j.ophtha.2016.04.056

    Article  Google Scholar 

  4. Chen, Q., et al.: Automatic segmentation of fluid-associated abnormalities and pigment epithelial detachment in retinal sd-oct images. In: Proceedings of MICCAI Retinal OCT Fluid Challenge (RETOUCH), pp. 15–21 (2017)

    Google Scholar 

  5. Deng, R., et al.: Segment anything model (SAM) for digital pathology: assess zero-shot segmentation on whole slide imaging. In: MIDL (2023)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Gao, Y., Xia, W., Hu, D., Gao, X.: DeSAM: decoupling segment anything model for generalizable medical image segmentation, arxiv.org/abs/2306.00499 (2023)

  8. Houlsby, N., et al.: Parameter-efficient transfer learning for nlp. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  9. Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  10. Hu, X., Xu, X., Shi, Y.: How to efficiently adapt large segmentation model (SAM) to medical image (2023). https://doi.org/10.48550/arxiv.2306.13731, arxiv.org/abs/2306.13731

  11. Huang, Y., et al.: Segment Anything Model for Medical Images? arXiv preprint arXiv:2304.14660 (2023)

  12. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z,www.nature.com/articles/s41592-020-01008-z

  13. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z, www.nature.com/articles/s41592-020-01008-z

  14. Ji, G.P., Fan, D.P., Xu, P., Cheng, M.M., Zhou, B., Gool, L.V.: SAM Struggles in Concealed Scenes - Empirical Study on "Segment Anything". arXiv preprint arXiv:2304.06022 (2023)

  15. Ji, W., Li, J., Bi, Q., Liu, T., Li, W., Cheng, L.: Segment anything is not always perfect: an investigation of SAM on different real-world applications. arXiv preprint arXiv:2304.05750 (2023)

  16. Kang, S.H., Park, H.S., Jang, J., Jeon, K.: Deep neural networks for the detection and segmentation of the retinal fluid in oct images. In: MICCAI Retinal OCT Fluid Challenge (RETOUCH) (2017)

    Google Scholar 

  17. Kirillov, A., et al.: Segment Anything. arXiv (2023). https://doi.org/10.48550/arxiv.2304.02643, arxiv.org/abs/2304.02643

  18. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), e0177459 (2017) https://doi.org/10.1371/journal.pone.0177459, www.journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459

  19. Lei, W., Wei, X., Zhang, X., Li, K., Zhang, S.: MedLSAM: localize and segment anything model for 3D medical images (2023). https://doi.org/10.48550/arxiv.2306.14752, arxiv.org/abs/2306.14752

  20. Lu, D., et al.: Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Med. Image Anal. 54, 100–110 (2019)

    Article  Google Scholar 

  21. Ma, J., Wang, B.: Segment anything in medical images. arXiv preprint arXiv:2304.12306 (2023)

  22. Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616(7956), 259–265 (2023). https://doi.org/10.1038/s41586-023-05881-4,www.nature.com/articles/s41586-023-05881-4

  23. Morley, D., Foroosh, H., Shaikh, S., Bagci, U.: Simultaneous detection and quantification of retinal fluid with deep learning. arXiv preprint arXiv:1708.05464 (2017)

  24. Ndipenoch, N., Miron, A., Wang, Z., Li, Y.: nnUNet RASPP for Retinal OCT Fluid Detection, Segmentation and Generalisation over Variations of Data Sources. arXiv preprint arXiv:2302.13195 (2023)

  25. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  26. Rashno, A., Koozekanani, D.D., Parhi, K.K.: Detection and segmentation of various types of fluids with graph shortest path and deep learning approaches. In: Proceedings of MICCAI Retinal OCT Fluid Challenge (RETOUCH), pp. 54–62 (2017)

    Google Scholar 

  27. Roy, S., et al.: SAM.MD: zero-shot medical image segmentation capabilities of the segment anything model. In: MIDL (2023)

    Google Scholar 

  28. Tennakoon, R., Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A.: Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks. In: International Symposium on Biomedical Imaging (ISBI), pp. 1436–1440. IEEE Computer Society (May 2018). https://doi.org/10.1109/ISBI.2018.8363842

  29. Wu, J., et al.: Medical SAM adapter: adapting segment anything model for medical image segmentation. arXiv preprint arXiv:2304.12620 (2023)

  30. Yadav, S., Gopinath, K., Sivaswamy, J.: A generalized motion pattern and fcn based approach for retinal fluid detection and segmentation. arXiv preprint arXiv:1712.01073 (2017)

  31. Zhang, K., Liu, D.: Customized Segment Anything Model for medical image segmentation (2023). https://doi.org/10.48550/arxiv.2304.13785, arxiv.org/abs/2304.13785

  32. Zhang, Y., Jiao, R.: How Segment Anything Model (SAM) boost medical image segmentation: a survey (2023). https://doi.org/10.48550/arxiv.2305.03678, arxiv.org/abs/2305.03678

Download references

Acknowledgements

The financial support by the Christian Doppler Research Association, Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrvoje Bogunović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fazekas, B., Morano, J., Lachinov, D., Aresta, G., Bogunović, H. (2023). Adapting Segment Anything Model (SAM) for Retinal OCT. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44013-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44012-0

  • Online ISBN: 978-3-031-44013-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics