Skip to main content

Abstract

Despite the availability of various tools, practitioners often lack a holistic perspective when conducting sustainability-related improvement activities. Existing Value Stream Mapping (VSM) tools that incorporate environmental aspects suffer from a lack of standardization and limited alignment with sustainability reporting standards. This paper introduces a framework for VSM that integrates sustainability indicators to assess and enhance the triple-bottom-line performance of manufacturing processes aligned with the global reporting initiative (GRI) standards. We validate the proposed framework through a case study conducted in a biopharmaceutical production system of a small and medium-sized enterprise (SME) that employs single-use technologies. The study highlights the critical need for collaboration with equipment suppliers to develop production specifications considering operational performance and environmental impact, thereby capturing a comprehensive perspective. By utilizing the proposed framework, practitioners can identify opportunities for improving the design and efficiency of production systems. The case study provides valuable insights into SMEs’ challenges when transitioning to sustainable production, particularly when product-related requirements impose limitations on sustainability improvements. Although the framework's validation focuses on a biopharmaceutical SME, it can be applied to manufacturing companies across industries to assess and enhance all three aspects of sustainability in their processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schneider, J.L., Wilson, A., Rosenbeck, J.M.: Pharmaceutical companies and sustainability: an analysis of corporate reporting. Benchmarking 17(3), 421–434 (2010). https://doi.org/10.1108/14635771011049371

    Article  Google Scholar 

  2. Ding, B.: Pharma Industry 4.0: literature review and research opportunities in sustainable pharmaceutical supply chains. Process Saf. Environ. Prot. 119, 115–130 (2018). https://doi.org/10.1016/j.psep.2018.06.031

    Article  Google Scholar 

  3. Low, Y.S., Halim, I., Adhitya, A., Chew, W., Sharratt, P.: Systematic framework for design of environmentally sustainable pharmaceutical supply chain network. J. Pharm. Innov. 11(3), 250–263 (2016). https://doi.org/10.1007/s12247-016-9255-8

    Article  Google Scholar 

  4. Adams, D., Donovan, J., Topple, C.: Achieving sustainability in food manufacturing operations and their supply chains: key insights from a systematic literature review. Sustain. Prod. Consum. 28, 1491–1499 (2021). https://doi.org/10.1016/j.spc.2021.08.019

    Article  Google Scholar 

  5. Acar, M.F., Aktas, E., Agan, Y., Bourlakis, M., Fatih, M., Aktas, E.: Does sustainability pay ? evidence from the food sector. J. Food Serv. Bus. Res. 22(3), 239–260 (2019). https://doi.org/10.1080/15378020.2019.1597672

    Article  Google Scholar 

  6. Rogge, P., Müller, D., Sch, S.R.: The single-use or stainless steel decision process: a CDMO perspective. Bioprocess Int. 13, January 2015

    Google Scholar 

  7. Shirahata, H., Hirao, M., Sugiyama, H.: Decision-support method for the choice between single-use and multi-use technologies in sterile drug product manufacturing. J. Pharm. Innov. 12(1), 1–13 (2017). https://doi.org/10.1007/s12247-016-9264-7

    Article  Google Scholar 

  8. Sulaiman, M.A., et al.: Cleaner production value stream mapping at a chromium plating plant: a case study. Int. J. Agil. Syst. Manag. 12(3), 245 (2019). https://doi.org/10.1504/ijasm.2019.10022800

  9. Domingo, R., Aguado, S.: Overall environmental equipment effectiveness as a metric of a lean and green manufacturing system. Sustainability 9031–9047 (2015). https://doi.org/10.3390/su7079031

  10. Narula, S., et al.: Applicability of industry 4.0 technologies in the adoption of global reporting initiative standards for achieving sustainability. J. Clean. Prod. 305 (2021). https://doi.org/10.1016/j.jclepro.2021.127141

  11. Hedberg, C.-J., von Malmborg, F.: The global reporting initiative and corporate sustainability reporting in Swedish companies. Corp. Soc. Responsib. Environ. Manag. 10, 153–164 (2003)

    Article  Google Scholar 

  12. Shukla, A.A., Gottschalk, U.: Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol. 31(3), 147–154 (2013). https://doi.org/10.1016/j.tibtech.2012.10.004

    Article  Google Scholar 

  13. Scheper, T., Eibl, R., Eibl, D.: Disposable Bioreactors (2009)

    Google Scholar 

  14. Pietrzykowski, M., Flanagan, W., Pizzi, V., Brown, A., Sinclair, A., Monge, M.: An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies. J. Clean. Prod. 41, 150–162 (2013). https://doi.org/10.1016/j.jclepro.2012.09.048

    Article  Google Scholar 

  15. Budzinski, K., et al.: Streamlined life cycle assessment of single use technologies in biopharmaceutical manufacture. N. Biotechnol. 68, 28–36 (2022). https://doi.org/10.1016/j.nbt.2022.01.002

    Article  Google Scholar 

  16. Chiarini, A.: Sustainable manufacturing-greening processes using specific Lean Production tools: an empirical observation from European motorcycle component manufacturers. J. Clean. Prod. 85, 226–233 (2014). https://doi.org/10.1016/j.jclepro.2014.07.080

    Article  Google Scholar 

  17. Swarnakar, V., Singh, A.R., Antony, J., Kr, A., Cudney, B.: Development of a conceptual method for sustainability assessment in manufacturing. Comput. Ind. Eng., August 2021. https://doi.org/10.1016/j.cie.2021.107403

  18. Rother, M., Shook, J.: Learning to see: value stream mapping to create value and eliminate MUDA. Lean Enterprise Institute, Cambridge, MA, June 1998

    Google Scholar 

  19. Garza-Reyes, J.A.: Green lean and the need for Six Sigma. Int. J. Lean Six Sigma 6(3), 226–248 (2015). https://doi.org/10.1108/IJLSS-04-2014-0010

    Article  Google Scholar 

  20. Rabnawaz Ahmed, R., Zhang, X.: Multi-layer value stream assessment of the reverse logistics network for inert construction waste management. Resour. Conserv. Recycl. 170, 105574, September 2020, 2021. https://doi.org/10.1016/j.resconrec.2021.105574

  21. Salvador, R., Barros, M.V., dos Santos, G.E.T., van Mierlo, K.G., Piekarski, C.M., de Francisco, A.C.: Towards a green and fast production system: Integrating life cycle assessment and value stream mapping for decision making. Environ. Impac (2021). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097739938&doi=10.1016%2Fj.eiar.2020.106519&partnerID=40&md5=afac3fc326c478cb444c942089405632

  22. Bjørn, A., Lloyd, S., Matthews, D.: From the Paris agreement to corporate climate commitments: evaluation of seven methods for setting ‘science-based’ emission targets. Environ. Res. Lett. 17(3) (2022). https://doi.org/10.1088/1748-9326/ac548e

  23. Marimon, F., Alonso-Almeida, M.D.M., Rodríguez, M.D.P., Cortez Alejandro, K.A.: The worldwide diffusion of the global reporting initiative: what is the point? J. Clean. Prod. 33, 132–144 (2012). https://doi.org/10.1016/j.jclepro.2012.04.017

  24. Liesen, A., Hoepner, A.G., Patten, D.M., Figge, F.: Does stakeholder pressure influence corporate GHG emissions reporting? empirical evidence from Europe. Account. Audit. Account. J. 28(7), 1047–1074 (2015). https://doi.org/10.1108/AAAJ-12-2013-1547

    Article  Google Scholar 

  25. Benameur, K.B., Mostafa, M.M., Hassanein, A., Shariff, M.Z., Al-Shattarat, W.: Sustainability reporting scholarly research: a bibliometric review and a future research agenda (2023)

    Google Scholar 

  26. Global Sustainability Standards Board: Global Reporting Initiative Standards (2020). www.globalreporting.org/standards

  27. Yin, R.: Case Study Research: Design and Methods, 5th ed. Sage publications, London, United Kingdom (2013)

    Google Scholar 

  28. Patton, M.Q.: Enhancing the quality and credibility of qualitative analysis. Health Serv. Res. 34(5), 1189–1208 (1999). https://doi.org/10.4135/9781412985727

    Article  Google Scholar 

  29. Smart, P., Tranfield, D., Denyer, D.: Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 14(3), 207–222 (2003). https://doi.org/10.1111/1467-8551.00375

    Article  Google Scholar 

  30. Morgan, S.J., Pullon, S.R.H., MacDonald, L.M., McKinlay, E.M., Gray, B.V.: Case study observational research: a framework for conducting case study research where observation data are the focus. Qual. Health Res. 27(7), 1060–1068 (2017). https://doi.org/10.1177/1049732316649160

    Article  Google Scholar 

  31. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. SAGE, London (2009)

    Google Scholar 

  32. Swarnakar, V., Singh, A.R., Antony, J., Tiwari, A.K., Cudney, E.: Development of a conceptual method for sustainability assessment in manufacturing. Comput. Ind. Eng. (2021). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107037576&doi=10.1016%2Fj.cie.2021.107403&partnerID=40&md5=0a1a32060a99959e28250afbe3757caf

Download references

Acknowledgments

The authors gratefully acknowledge the support of the case company; without their support, this research would not have been possible. This work was supported by Sweden's Government Agency for Innovation VINNOVA Programme, ALISTAIR project [grant number 2020–03404].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuhara Zemke Chavez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chavez, Z.Z., Tay, M.P., Islam, M.H., Bellgran, M. (2023). Driving Sustainability Through a VSM-Indicator-Based Framework: A Case in Pharma SME. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-031-43662-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43662-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43661-1

  • Online ISBN: 978-3-031-43662-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics