Skip to main content

Fuzzy Presheaves are Quasitoposes

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2023)

Abstract

Quasitoposes encompass a wide range of structures, including various categories of graphs. They have proven to be a natural setting for reasoning about the metatheory of algebraic graph rewriting. In this paper we propose and motivate the notion of fuzzy presheaves, which generalises fuzzy sets and fuzzy graphs. We prove that fuzzy presheaves are rm-adhesive quasitoposes, proving our recent conjecture for fuzzy graphs. Furthermore, we show that simple fuzzy graph categories are quasitoposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We moreover conjecture that PBPO\(^{+}\) subsumes SPO in quasitoposes [30, Rem. 26].

  2. 2.

    See e.g. [2, Def. 6.7], [45, Def. 24.1], or [24, 8.1].

  3. 3.

    Note that completeness and cocompleteness are equivalent for lattices [2, Def. 6.8].

  4. 4.

    The symbol \(\blacksquare \) denotes that the proof is in the extended version on arXiv [38]. A sketch of the proof is in [24, p.37-38].

  5. 5.

    Also known as quasiadhesive.

  6. 6.

    A graph homomorphism \(f : G \rightarrow H\) reflects edges if, for every \(v,w \in G(V)\), every edge between \(f_V(v)\) and \(f_V(w)\) has an f-preimage.

References

  1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Wiley, New York (1990)

    MATH  Google Scholar 

  2. Awodey, S.: Category Theory. Oxford Logic Guides. Ebsco Publishing (2006)

    Google Scholar 

  3. Baez, J.C., Genovese, F., Master, J., Shulman, M.: Categories of nets. In: 36th Annual Symposium on Logic in Computer Science, pp. 1–13. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.9470566

  4. Bauderon, M.: A uniform approach to graph rewriting: the pullback approach. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 101–115. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60618-1_69

    Chapter  Google Scholar 

  5. Behr, N., Harmer, R., Krivine, J.: Concurrency theorems for non-linear rewriting theories. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2021. LNCS, vol. 12741, pp. 3–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78946-6_1

    Chapter  Google Scholar 

  6. Behr, N., Harmer, R., Krivine, J.: Concurrency theorems for non-linear rewriting theories. CoRR abs/2105.02842 (2021). https://arxiv.org/abs/2105.02842

  7. Borceux, F.: Handbook of Categorical Algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50. Cambridge University Press, Cambridge (1994). Basic category theory

    Google Scholar 

  8. Borceux, F.: Handbook of Categorical Algebra. 3, Encyclopedia of Mathematics and its Applications, vol. 52. Cambridge University Press, Cambridge (1994). Categories of sheaves

    Google Scholar 

  9. Carboni, A., Johnstone, P.T.: Connected limits, familial representability and Artin glueing. Math. Struct. Comput. Sci. 5(4), 441–459 (1995). https://doi.org/10.1017/S0960129500001183

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardoso, J., Valette, R., Dubois, D.: Fuzzy petri nets: an overview. IFAC Proc. Volumes 29(1), 4866–4871 (1996). https://doi.org/10.1016/S1474-6670(17)58451-7. 13th World Congress of IFAC, 1996

  11. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_3

    Chapter  MATH  Google Scholar 

  12. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: The PBPO graph transformation approach. J. Log. Algebraic Methods Program. 103, 213–231 (2019). https://doi.org/10.1016/j.jlamp.2018.12.003

    Article  MathSciNet  MATH  Google Scholar 

  13. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.1007/11841883_4

    Chapter  Google Scholar 

  14. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: 14th Annual Symposium on Switching and Automata Theory, pp. 167–180. IEEE Computer Society (1973). https://doi.org/10.1109/SWAT.1973.11

  15. Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories. Theory Appl. Categories 27, 27–46 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Goguen, J.: \(L\)-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967). https://doi.org/10.1016/0022-247X(67)90189-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnstone, P.T.: On a topological topos. Proc. London Math. Soc. s3–38(2), 237–271 (1979). https://doi.org/10.1112/plms/s3-38.2.237

  18. Johnstone, P.T.: Sketches of An Elephant: A Topos Theory Compendium. Oxford Logic Guides. Oxford University Press, New York (2002)

    Google Scholar 

  19. Johnstone, P.T., Lack, S., Sobociński, P.: Quasitoposes, quasiadhesive categories and artin glueing. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 312–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73859-6_21

    Chapter  MATH  Google Scholar 

  20. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24727-2_20

    Chapter  Google Scholar 

  21. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO Theor. Inform. Appl. 39 (2005). https://doi.org/10.1051/ita:2005028

  22. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1 &2), 181–224 (1993). https://doi.org/10.1016/0304-3975(93)90068-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Springer, New York (1971). https://doi.org/10.1007/978-1-4757-4721-8

    Book  MATH  Google Scholar 

  24. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer-Verlag, New York (1994). A first introduction to topos theory, Corrected reprint of the 1992 edition

    Google Scholar 

  25. Mathew, S., Mordeson, J.N., Malik, D.S.: Fuzzy Graph Theory, vol. 363. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71407-3

  26. Mori, M., Kawahara, Y.: Fuzzy graph rewritings. 918, 65–71 (1995)

    Google Scholar 

  27. Overbeek, R., Endrullis, J.: From linear term rewriting to graph rewriting with preservation of termination. In: Proceedings of Workshop on Graph Computational Models (GCM). EPTCS, vol. 350, pp. 19–34 (2021). https://doi.org/10.4204/EPTCS.350.2

  28. Overbeek, R., Endrullis, J.: A PBPO\(^{+}\) graph rewriting tutorial. In: Proceedings of Workshop on Computing with Terms and Graphs (TERMGRAPH). EPTCS, vol. 377, pp. 45–63. Open Publishing Association (2023). https://doi.org/10.4204/EPTCS.377.3

  29. Overbeek, R., Endrullis, J.: Termination of graph transformation systems using weighted subgraph counting. In: Graph Transformation - 16th International Conference, ICGT 2023. LNCS, vol. 13961. Springer (2023). https://doi.org/10.48550/arXiv.2303.07812

  30. Overbeek, R., Endrullis, J., Rosset, A.: Graph rewriting and relabeling with PBPO\(^{+}\): a unifying theory for quasitoposes. J. Log. Algebr. Methods Program. (2023). https://doi.org/10.1016/j.jlamp.2023.100873

  31. Overbeek, R., Endrullis, J., Rosset, A.: Graph rewriting and relabeling with PBPO\(^+\). In: ICGT (2020). https://doi.org/10.1007/978-3-030-78946-6_4

  32. Pal, M., Samanta, S., Ghorai, G.: Modern Trends in Fuzzy Graph Theory. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-8803-7

  33. Parasyuk, I.N., Ershov, S.V.: Transformations of fuzzy graphs specified by FD-grammars. Cybern. Syst. Anal. 43, 266–280 (2007). https://doi.org/10.1007/s10559-007-0046-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Parasyuk, I.N., Yershov, S.V.: Categorical approach to the construction of fuzzy graph grammars. Cybern. Syst. Anal. 42, 570–581 (2006). https://doi.org/10.1007/s10559-006-0094-3

    Article  MATH  Google Scholar 

  35. Parasyuk, I.N., Yershov, S.V.: Transformational approach to the development of software architectures on the basis of fuzzy graph models. Cybern. Syst. Anal. 44, 749–759 (2008). https://doi.org/10.1007/s10559-008-9048-2

    Article  MATH  Google Scholar 

  36. Plessas, D.J.: The categories of graphs. Ph.D. thesis, The University of Montana (2011). https://www.scholarworks.umt.edu/etd/967/. Dissertations & Professional Papers. 967

  37. Rosenfeld, A.: Fuzzy graphs. In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes, pp. 77–95. Elsevier (1975)

    Google Scholar 

  38. Rosset, A., Overbeek, R., Endrullis, J.: Fuzzy presheaves are quasitoposes. CoRR abs/2301.13067 (2023). https://doi.org/10.48550/arXiv.2301.13067

  39. Spivak, D.I.: Metric realization of fuzzy simplicial sets (2009)

    Google Scholar 

  40. Srivastava, A.K., Tiwari, S.P.: On categories of fuzzy petri nets. Adv. Fuzzy Sys. 2011 (2011). https://doi.org/10.1155/2011/812040

  41. Stout, L.N.: The logic of unbalanced subobjects in a category with two closed structures. In: Rodabaugh, S.E., Klement, E.P., Höhle, U. (eds.) Applications of Category Theory to Fuzzy Subsets. Theory and Decision Library, pp. 73–105. Springer, Dordrecht (1992). https://doi.org/10.1007/978-94-011-2616-8_4

  42. Sugeno, M., Sasaki, M.: L-fuzzy category. Fuzzy Sets Syst. 11(1), 43–64 (1983). https://doi.org/10.1016/S0165-0114(83)80068-2

    Article  MathSciNet  MATH  Google Scholar 

  43. Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics. Wiley, Hoboken (2020)

    Book  MATH  Google Scholar 

  44. Vigna, S.: A guided tour in the topos of graphs (2003). https://doi.org/10.48550/ARXIV.MATH/0306394

  45. Wyler, O.: Lecture Notes on Topoi and Quasitopoi. World Scientific (1991)

    Google Scholar 

  46. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank Helle Hvid Hansen for discussions and valuable suggestions. The authors received funding from the Netherlands Organization for Scientific Research (NWO) under the Innovational Research Incentives Scheme Vidi (project. No. VI.Vidi.192.004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloïs Rosset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosset, A., Overbeek, R., Endrullis, J. (2023). Fuzzy Presheaves are Quasitoposes. In: Fernández, M., Poskitt, C.M. (eds) Graph Transformation. ICGT 2023. Lecture Notes in Computer Science, vol 13961. Springer, Cham. https://doi.org/10.1007/978-3-031-36709-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36709-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36708-3

  • Online ISBN: 978-3-031-36709-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics