Skip to main content

A Deep Approach for Volumetric Tractography Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Abstract

The study of tracts—bundles of nerve fibers that are organized together and have a similar function—is of major interest in neurology and related areas of science. Tractography is the medical imaging technique that provides the information to estimate these tracts, which is crucial for clinical applications and scientific research. This is a complex task due to the nature of the nerve fibers, also known as streamlines, and requires human interaction with prior knowledge. In this paper, we propose an automatic volumetric segmentation architecture based on the 3D U-Net architecture to segment each tract individually from streamlines data. We evaluate the impact of different data pre-processing techniques namely Rescaled Density Map (RDM), Gaussian Filter Mask (GFM), and Closing Opening Mask (COM) on the final segmentation results using the Tractoinferno dataset. In our experiments, the average DICE and IoU average performance was 62.2% and 72.2% respectively. Our results show that proper data pre-processing can significantly enhance segmentation performance. Moreover, we achieve similar levels of accuracy for all segmented tracts, despite shape disparity and an unequal number of occurrences in the tract dataset. Overall, this work contributes to the field of neuroimaging by providing a reliable approach for accurately segmenting individual tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Santis, S., Sommer, W.H., Canals, S.: Detecting alcohol-induced brain damage noninvasively using diffusion tensor imaging. ACS Chem. Neurosci. 10(10), 4187–4189 (2019)

    Article  Google Scholar 

  2. De Santis, S., et al.: Chronic alcohol consumption alters extracellular space geometry and transmitter diffusion in the brain. Sci. Adv. 6(26), eaba0154 (2020)

    Google Scholar 

  3. Assaf, Y., Pasternak, O.: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34(1), 51–61 (2008)

    Article  Google Scholar 

  4. Jeurissen, B., et al.: Diffusion MRI fiber tractography of the brain. NMR Biomed. 32(4), e3785 (2019)

    Article  Google Scholar 

  5. Poulin, P., et al.: Tractography and machine learning: current state and open challenges. Magn. Reson. Imaging 64, 37–48 (2019)

    Article  Google Scholar 

  6. Zhang, F., et al.: Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. Neuroimage 249, 118870 (2022)

    Article  Google Scholar 

  7. Hosseini, S., et al.: CTtrack: a CNN+transformer-based framework for fiber orientation estimation & tractography. Neurosci. Inform. 2(4), 100099 (2022)

    Article  MathSciNet  Google Scholar 

  8. Li, B., et al.: Neuro4Neuro: a neural network approach for neural tract segmentation using large-scale population-based diffusion imaging. Neuroimage 218, 116993 (2020)

    Article  Google Scholar 

  9. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg - Fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018)

    Article  Google Scholar 

  10. Zhang, F., et al.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)

    Article  Google Scholar 

  11. Lu, Q., Li, Y., Ye, C.: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks. Med. Image Anal. 72, 102094 (2021)

    Article  Google Scholar 

  12. Liu, W., et al.: Volumetric segmentation of white matter tracts with label embedding. Neuroimage 250, 118934 (2022)

    Article  Google Scholar 

  13. Lu, Q., et al.: A transfer learning approach to few-shot segmentation of novel white matter tracts. Med. Image Anal. 79, 102454 (2022)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234–241 (2015)

    Google Scholar 

  15. Zhang, Y., et al.: Bridging 2D and 3D segmentation networks for computation-efficient volumetric medical image segmentation: an empirical study of 2.5D solutions. Comput. Med. Imaging Graph. 99, 102088 (2022)

    Google Scholar 

  16. Burdescu, D.D., et al.: Efficient volumetric segmentation method. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 659–668 (2014)

    Google Scholar 

  17. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  18. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  19. Qamar, S., et al.: A variant form of 3D-UNet for infant brain segmentation. Futur. Gener. Comput. Syst. 108, 613–623 (2020)

    Article  Google Scholar 

  20. Mukherjee, P., et al.: Diffusion tensor MR imaging and fiber tractography: technical considerations. Am. J. Neuroradiol. 29(5), 843–852 (2008)

    Article  Google Scholar 

  21. Xu, K., et al.: Optimization of graph neural networks: Implicit acceleration by skip connections and more depth. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning, vol. 139 of Proceedings of Machine Learning Research, pp. 11592–11602, PMLR (2021)

    Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  23. Im, D., et al.: DT-CNN: an energy-efficient dilated and transposed convolutional neural network processor for region of interest based image segmentation. IEEE Trans. Circuits Syst. I Regul. Pap. 67(10), 3471–3483 (2020)

    Article  Google Scholar 

  24. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). software available from tensorflow.org, https://www.tensorflow.org/

  25. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8(FEB), 8 (2014)

    Google Scholar 

  26. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2014)

    Google Scholar 

  27. Poulin, P., et al.: TractoInferno: a large-scale, open-source, multi-site database for machine learning dMRI tractography. bioRxiv, 2021.11.29.470422 (2021)

    Google Scholar 

  28. Basser, P.J., et al.: In Vivo Fiber Tractography Using DT-MRI Data, Technical report (2000)

    Google Scholar 

  29. Tournier, J.-D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  30. Girard, G., et al.: Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278 (2014)

    Article  Google Scholar 

  31. St-Onge, E., et al.: Surface-enhanced tractography (set). Neuroimage 169, 524–539 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Saval-Calvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rocamora-García, P., Saval-Calvo, M., Villena-Martinez, V., Gallego, A.J. (2023). A Deep Approach for Volumetric Tractography Segmentation. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics