Skip to main content

Inter vs. Intra Domain Study of COVID Chest X-Ray Classification with Imbalanced Datasets

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Abstract

Medical image classification datasets usually have a limited availability of annotated data, and pathological samples are usually much scarcer than healthy cases. Furthermore, data is often collected from different sources with different acquisition devices and population characteristics, making the trained models highly dependent on the data domain and thus preventing generalization. In this work, we propose to address these issues by combining transfer learning, data augmentation, a weighted loss function to balance the data, and domain adaptation. We evaluate the proposed approach on different chest X-Ray datasets labeled with COVID positive and negative diagnoses, yielding an average improvement of 15.3% in \({\text {F}}_1\) compared to the base case of training the model without considering these techniques. A 19.1% improvement is obtained in the intra-domain evaluation and a 7.7% for the inter-domain case.

This work was supported by the I+D+i project TED2021-132103A-I00 (DOREMI), funded by MCIN/AEI/10.13039/501100011033.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the datasets considered are publicly available: ChestX-ray is available at https://nihcc.app.box.com/v/ChestXray-NIHCC, GitHub-COVID at https://github.com/ieee8023/covid-chestxray-dataset, PadChest can be found at https://bimcv.cipf.es/bimcv-projects/padchest, and BIMCV-COVID repositories are available at https://bimcv.cipf.es/bimcv-projects/bimcv-covid19.

References

  1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  2. Gallego, A.J., Calvo-Zaragoza, J., Fisher, R.B.: Incremental unsupervised domain-adversarial training of neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4864–4878 (2021). https://doi.org/10.1109/TNNLS.2020.3025954

    Article  Google Scholar 

  3. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  Google Scholar 

  4. Garay-Maestre, U., Gallego, A.-J., Calvo-Zaragoza, J.: Data augmentation via variational auto-encoders. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 29–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_4

    Chapter  Google Scholar 

  5. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  6. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/j.media.2016.05.004

    Article  Google Scholar 

  7. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009). https://doi.org/10.1109/TKDE.2008.239

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  9. Mitchell, T.M.: Machine Learning, vol. 1. McGraw-Hill, New York (1997)

    Google Scholar 

  10. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: overview, challenges and the future. In: Dey, N., Ashour, A., Borra, S. (eds.) Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65981-7_12

    Chapter  Google Scholar 

  11. Rosello, A., Valero-Mas, J.J., Gallego, A.J., Sáez-Pérez, J., Calvo-Zaragoza, J.: Kurcuma: a kitchen utensil recognition collection for unsupervised domain adaptation. Pattern Anal. Appl. (2023). https://doi.org/10.1007/s10044-023-01147-x

  12. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016). https://doi.org/10.1109/TMI.2016.2528162

    Article  Google Scholar 

  13. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  14. Valero-Mas, J.J., Gallego, A.J., Alonso-Jiménez, P., Serra, X.: Multilabel prototype generation for data reduction in k-nearest neighbour classification. Pattern Recogn. 135, 109190 (2023). https://doi.org/10.1016/j.patcog.2022.109190

    Article  Google Scholar 

  15. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018). https://doi.org/10.1016/j.neucom.2018.05.083

    Article  Google Scholar 

  16. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471 (2017). https://doi.org/10.1109/CVPR.2017.369

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Javier Gallego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galán-Cuenca, A., Mirón, M., Gallego, A.J., Saval-Calvo, M., Pertusa, A. (2023). Inter vs. Intra Domain Study of COVID Chest X-Ray Classification with Imbalanced Datasets. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics