Skip to main content

Identifying Thermokarst Lakes Using Discrete Wavelet Transform–Based Deep Learning Framework

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14062))

Included in the following conference series:

  • 806 Accesses

Abstract

Thermokarst lakes serve as key signs of permafrost thaw, and as point sources of CH\(_4\) in the present and near future [17]. However, detailed information on the distribution of thermokarst lakes remains sparse across the entire permafrost region on the Qinghai-Tibet Plateau (QTP). In this research, we developed the first discrete wavelet transform (DWT) based dual input deep learning (DL) model using a convolutional neural network (CNN) framework to automatically classify and accurately predict thermokarst lakes. We created a new 3-way tensor dataset based on raw image data from more than 500 Sentinel-2 satellite lake images and decomposed those images using state-of-the-art M-band DWTs. We also incorporated non-image feature data for various climate variables. The special data treatment adds additional features and improves validation accuracy by up to 17%. As our data pre-processing does not require any manual polygon tracing, our method is more robust and can be upscaled easily without having to collect field data. (The code and confusion matrices not present in this paper can be found in this GitHub repository: https://github.com/jliu2006/pingo)

A. Li, J. Liu and O. Liu—These authors made equal contribution to this research project and share first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, H., Liqiang, T., Zhaocheng, G., Jienan, T., Hua, W., Peng, H.: A dynamics trend analysis method of thermokarst lakes based on the machine learning algorithm, pp. 6484–6487 (2021). https://doi.org/10.1109/IGARSS47720.2021.9554435

  2. Grosse, G., Jones, B., Arp, C.: 8.21 thermokarst lakes, drainage, and drained basins, pp. 325–353 (2013). https://doi.org/10.1016/B978-0-12-374739-6.00216-5

  3. Huang, L., Liu, L., Jiang, L., Zhang, T.: Automatic mapping of thermokarst landforms from remote sensing images using deep learning: a case study in the northeastern Tibetan plateau. Remote Sens. 10(12), 2067 (2018). https://doi.org/10.3390/rs10122067

    Article  Google Scholar 

  4. Huang, L., Luo, J., Lin, Z., Niu, F., Liu, L.: Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sens. Environ. 237, 111534 (2020). https://doi.org/10.1016/j.rse.2019.111534

    Article  Google Scholar 

  5. Jin, H., Ma, Q.: Impacts of permafrost degradation on carbon stocks and emissions under a warming climate: a review. Atmosphere 12(11), 1425 (2021). https://doi.org/10.3390/atmos12111425

    Article  Google Scholar 

  6. Lara, M.J.: Driven by climate change, thawing permafrost is radically changing the arctic landscape (2022). https://www.pbs.org/newshour/science/driven-by-climate-change-thawing-permafrost-is-radically-changing-the-arctic-landscape

  7. Liu, Z., Liu, T., Sun, W., Zhao, Y., Wang, X.: M-band wavelet-based imputation of scRNA-seq matrix and multi-view clustering of cells. FASEB J. 36(S1), R5102 (2022). https://doi.org/10.1096/fasebj.2022.36.S1.R5102

    Article  Google Scholar 

  8. Martinez, J.C.: Introduction to convolutional neural networks CNNs (2020). https://aigents.co/data-science-blog/publication/introduction-to-convolutional-neural-networks-cnns

  9. Muñoz Sabater, J.: Era5-land monthly averaged data from 1981 to present (2019). https://doi.org/10.24381/cds.68d2bb30

  10. Polishchuk, V., Polischchuk, Y.: The system of geo-simulation modeling of thermokarst lakes fields based on the log-normal distribution of their sizes. Adv. Intell. Syst. Res. 174, 195–199 (2020). https://doi.org/10.2991/aisr.k.201029.037

    Article  Google Scholar 

  11. Qiao, B., Zhu, L., Yang, R.: Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan plateau. Remote Sens. Environ. 222, 232–243 (2019). https://doi.org/10.1016/j.rse.2018.12.037

    Article  Google Scholar 

  12. Shaposhnikova, M., Duguay, C.R.: Roy-Léveillée: bedfast and floating ice dynamics of thermokarst lakes using a temporal deep learning mapping approach: case study of the old crow flats, Yukon, Canada. EGUsphere 2022, 1–36 (2022). https://doi.org/10.5194/egusphere-2022-388

    Article  Google Scholar 

  13. Shaposhnikova, M.: Temporal Deep Learning Approach to Bedfast and Floating Thermokarst Lake Ice Mapping using SAR imagery: Old Crow Flats, Yukon, Canada. Master’s thesis, University of Waterloo (2021). http://hdl.handle.net/10012/17414

  14. Wang, X., et al.: Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 12(3), 2169–2182 (2020). https://doi.org/10.5194/essd-12-2169-2020

    Article  Google Scholar 

  15. Wei, Z., et al.: Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet plateau. Earth Space Sci. 8(11), 154761 (2021). https://doi.org/10.1029/2021EA001950

    Article  Google Scholar 

  16. Yin, G., Luo, J., Niu, F., Lin, Z., Liu, M.: Machine learning-based thermokarst landslide susceptibility modeling across the permafrost region on the Qinghai-Tibet Plateau. Landslides 18(7), 2639–2649 (2021). https://doi.org/10.1007/s10346-021-01669-7

    Article  Google Scholar 

  17. Zandt, M.H.i., Liebner, S., Welte, C.U.: Roles of thermokarst lakes in a warming world. Cell Press 28(10), 769–779 (2020). https://doi.org/10.1016/j.tim.2020.04.002

  18. Serban, R.D., Jin, H., Serban, M., Luo, D.: Shrinking thermokarst lakes and ponds on the northeastern Qinghai-Tibet plateau over the past three decades. Permafrost Periglac. Process. 32(4), 601–617 (2021). https://doi.org/10.1002/ppp.2127

    Article  Google Scholar 

  19. Serban, R.D., et al.: Mapping thermokarst lakes and ponds across permafrost landscapes in the headwater area of yellow river on northeastern Qinghai-Tibet plateau. Int. J. Remote Sens. 41(18), 7042–7067 (2020). https://doi.org/10.1080/01431161.2020.1752954

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, A., Liu, J., Liu, O., Wang, X. (2023). Identifying Thermokarst Lakes Using Discrete Wavelet Transform–Based Deep Learning Framework. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics