Skip to main content

Tinnitus and the Somatosensory System

  • Chapter
  • First Online:
Textbook of Tinnitus

Abstract

Auditory-somatosensory interactions are characteristic of brain functioning and important for multisensory integration, speech, and suppression of self-generated sounds.

The auditory system is a distributed network of the lemniscal pathway and the extralemniscal pathway. The extralemniscal pathway connects to other sensory systems, as well as the limbic system. Under deafferentation, the extralemniscal system compensates for a degeneration of the lemniscal pathway. Consequently, the auditory system starts ‘listening’ to somatosensory system input, which may generate somatic (=somatosensory) tinnitus, in which changes in the somatosensory system influence tinnitus. This may also be reflected by the fact that tinnitus is associated with different forms of pain.

The mechanism has been partially elucidated and involves connections between the somatosensory and auditory system at all levels of the ascending pathways.

These connections can therapeutically be targeted by physical therapy, botulinum toxin injections, electrical somatosensory stimulation, and bimodal stimulation.

Aage R. Møller has died before the publication of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teichert M, Bolz J. How senses work together: cross-modal interactions between primary sensory cortices. Neural Plast. 2018;2018:5380921.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moller A. New developments in neuroscience. J Integr Creative Stud. 2015;10:1–23.

    Google Scholar 

  3. Moller A. New developments in neuroscience. A review. Arch Neurol Neurosurg. 2019;2:48–58.

    Google Scholar 

  4. Fuster JM. The cognit: a network model of cortical representation. Int J Psychophysiol. 2006;60(2):125–32.

    Article  PubMed  Google Scholar 

  5. Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically modular organization of brain networks. Front Neurosci. 2010;4:200.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683–95.

    Article  CAS  PubMed  Google Scholar 

  7. De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev. 2021;130:125–46.

    Article  PubMed  Google Scholar 

  8. De Ridder D, Maciaczyk J, Vanneste S. The future of neuromodulation: smart neuromodulation. Expert Rev Med Devices. 2021;18(4):307–17.

    Article  PubMed  Google Scholar 

  9. Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72.

    Article  CAS  PubMed  Google Scholar 

  10. Freeman WJ, Kozma R, Werbos PJ. Biocomplexity: adaptive behavior in complex stochastic dynamical systems. Biosystems. 2001;59(2):109–23.

    Article  CAS  PubMed  Google Scholar 

  11. Wu C, Stefanescu RA, Martel DT, Shore SE. Listening to another sense: somatosensory integration in the auditory system. Cell Tissue Res. 2015;361(1):233–50.

    Article  PubMed  Google Scholar 

  12. Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci. 2002;3(6):443–52.

    Article  CAS  PubMed  Google Scholar 

  13. Neville H, Bavelier D. Human brain plasticity: evidence from sensory deprivation and altered language experience. Prog Brain Res. 2002;138:177–88.

    Article  PubMed  Google Scholar 

  14. Moller A. Neuroplasticity and its dark sides: disorders of the nervous system. Dallas: Aage Moller Publishing; 2018.

    Google Scholar 

  15. Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. 2015;38(2):86–95.

    Article  CAS  PubMed  Google Scholar 

  16. Fornito A, Bullmore ET. Connectomics: a new paradigm for understanding brain disease. Eur Neuropsychopharmacol. 2014;25:733.

    Article  PubMed  Google Scholar 

  17. van den Heuvel MP, Sporns O. A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci. 2019;20(7):435–46.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Uhlhaas PJ. Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol. 2013;23(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  19. Diwadkar VA, Bakshi N, Gupta G, Pruitt P, White R, Eickhoff SB. Dysfunction and dysconnection in cortical-striatal networks during sustained attention: genetic risk for schizophrenia or bipolar disorder and its impact on brain network function. Front Psych. 2014;5:50.

    Google Scholar 

  20. Hannan AJ. Synaptopathy, circuitopathy and the computational biology of Huntington’s disease. BMC Biol. 2018;16(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Crossley NA, Mechelli A, Scott J, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain. 2014;137(Pt 8):2382–95.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fu Z, Iraji A, Turner JA, et al. Dynamic state with covarying brain activity-connectivity: on the pathophysiology of schizophrenia. NeuroImage. 2020;224:117385.

    Article  PubMed  Google Scholar 

  23. Smits M, Kovacs S, de Ridder D, Peeters RR, van Hecke P, Sunaert S. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology. 2007;49(8):669–79.

    Article  PubMed  Google Scholar 

  24. Andersson G, Lyttkens L, Hirvela C, Furmark T, Tillfors M, Fredrikson M. Regional cerebral blood flow during tinnitus: a PET case study with lidocaine and auditory stimulation. Acta Otolaryngol. 2000;120(8):967–72.

    Article  CAS  PubMed  Google Scholar 

  25. Eichhammer P, Hajak G, Kleinjung T, Landgrebe M, Langguth B. Functional imaging of chronic tinnitus: the use of positron emission tomography. Prog Brain Res. 2007;166:83–8.

    Article  CAS  PubMed  Google Scholar 

  26. van der Loo E, Gais S, Congedo M, et al. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One. 2009;4(10):e7396.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weisz N, Muller S, Schlee W, Dohrmann K, Hartmann T, Elbert T. The neural code of auditory phantom perception. J Neurosci. 2007;27(6):1479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burton H, Wineland A, Bhattacharya M, Nicklaus J, Garcia KS, Piccirillo JF. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neurosci. 2012;13:3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen YC, Zhang H, Kong Y, et al. Alterations of the default mode network and cognitive impairment in patients with unilateral chronic tinnitus. Quant Imaging Med Surg. 2018;8(10):1020–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. De Ridder D, Vanneste S. Targeting the parahippocampal area by auditory cortex stimulation in tinnitus. Brain Stimul. 2014;7:709.

    Article  PubMed  Google Scholar 

  31. De Ridder D, Vanneste S. The Bayesian brain in imbalance: medial, lateral and descending pathways in tinnitus and pain: a perspective. Prog Brain Res. 2021;262:309–34.

    Article  PubMed  Google Scholar 

  32. De Ridder D, Vanneste S, Weisz N, et al. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev. 2014;44:16–32.

    Article  PubMed  Google Scholar 

  33. Eggermont JJ. Separate auditory pathways for the induction and maintenance of tinnitus and hyperacusis? Prog Brain Res. 2021;260:101–27.

    Article  PubMed  Google Scholar 

  34. Henderson-Sabes J, Shang Y, Perez PL, et al. Corticostriatal functional connectivity of bothersome tinnitus in single-sided deafness. Sci Rep. 2019;9(1):19552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu J, Cui J, Xu JJ, Yin X, Wu Y, Qi J. The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging. Front Neurosci. 2021;15:621145.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hullfish J, Abenes I, Kovacs S, Sunaert S, De Ridder D, Vanneste S. Functional connectivity analysis of fMRI data collected from human subjects with chronic tinnitus and varying levels of tinnitus-related distress. Data Brief. 2018;21:779–89.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hullfish J, Abenes I, Yoo HB, De Ridder D, Vanneste S. Frontostriatal network dysfunction as a domain-general mechanism underlying phantom perception. Hum Brain Mapp. 2019;40(7):2241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim JY, Kim YH, Lee S, et al. Alteration of functional connectivity in tinnitus brain revealed by resting-state fMRI? A pilot study. Int J Audiol. 2012;51(5):413–7.

    Article  PubMed  Google Scholar 

  39. Lee MH, Solowski N, Wineland A, et al. Functional connectivity during modulation of tinnitus with orofacial maneuvers. Otolaryngol Head Neck Surg. 2012;147:757.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maudoux A, Lefebvre P, Cabay JE, et al. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res. 2012;1485:10.

    Article  CAS  PubMed  Google Scholar 

  41. Maudoux A, Lefebvre P, Cabay JE, et al. Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS One. 2012;7(5):e36222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohan A, Alexandra SJ, Johnson CV, De Ridder D, Vanneste S. Effect of distress on transient network dynamics and topological equilibrium in phantom sound perception. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;84(Pt A):79–92.

    Article  Google Scholar 

  43. Mohan A, Davidson C, De Ridder D, Vanneste S. Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception - identifying the core distress network. Brain Imaging Behav. 2020;14(1):289–307.

    Article  PubMed  Google Scholar 

  44. Mohan A, De Ridder D, Idiculla R, DSouza C, Vanneste S. Distress-dependent temporal variability of regions encoding domain-specific and domain-general behavioral manifestations of phantom percepts. Eur J Neurosci. 2018;48(2):1743–64.

    Article  PubMed  Google Scholar 

  45. Mohan A, De Ridder D, Vanneste S. Graph theoretical analysis of brain connectivity in phantom sound perception. Sci Rep. 2016;6:19683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mohan A, De Ridder D, Vanneste S. Emerging hubs in phantom perception connectomics. Neuroimage Clin. 2016;11:181–94.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mohan A, Moreno N, Song JJ, De Ridder D, Vanneste S. Evidence for behaviorally segregated, spatiotemporally overlapping subnetworks in phantom sound perception. Brain Connect. 2017;7(3):197–210.

    Article  PubMed  Google Scholar 

  48. Schlee W, Mueller N, Hartmann T, Keil J, Lorenz I, Weisz N. Mapping cortical hubs in tinnitus. BMC Biol. 2009;7:80.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schlee W, Weisz N, Bertrand O, Hartmann T, Elbert T. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS One. 2008;3(11):e3720.

    Article  PubMed  PubMed Central  Google Scholar 

  50. To WT, De Ridder D, Hart J Jr, Vanneste S. Changing brain networks through non-invasive neuromodulation. Front Hum Neurosci. 2018;12:128.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vanneste S, De Ridder D. Stress-related functional connectivity changes between auditory cortex and cingulate in tinnitus. Brain Connect. 2015;5:371.

    Article  PubMed  Google Scholar 

  52. Vanneste S, De Ridder D. Deafferentation-based pathophysiological differences in phantom sound: tinnitus with and without hearing loss. NeuroImage. 2016;129:80–94.

    Article  PubMed  Google Scholar 

  53. Vanneste S, Focquaert F, Van de Heyning P, De Ridder D. Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res. 2011;210(2):217–27.

    Article  PubMed  Google Scholar 

  54. Vanneste S, Joos K, Ost J, De Ridder D. Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress. Neurobiol Stress. 2018;8:211–24.

    Article  PubMed  Google Scholar 

  55. Vanneste S, To WT, De Ridder D. Tinnitus and neuropathic pain share a common neural substrate in the form of specific brain connectivity and microstate profiles. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;88:388–400.

    Article  Google Scholar 

  56. Wineland AM, Burton H, Piccirillo J. Functional connectivity networks in nonbothersome tinnitus. Otolaryngol Head Neck Surg. 2012;147:900.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Crippa A, Lanting CP, van Dijk P, Roerdink JB. A diffusion tensor imaging study on the auditory system and tinnitus. Open Neuroimaging J. 2010;4:16–25.

    Article  Google Scholar 

  58. De Ridder D, Schlee W, Vanneste S, et al. Tinnitus and tinnitus disorder: theoretical and operational definitions (an international multidisciplinary proposal). Prog Brain Res. 2021;260:1–25.

    Article  PubMed  Google Scholar 

  59. Sperdin HF, Cappe C, Murray MM. The behavioral relevance of multisensory neural response interactions. Front Neurosci. 2010;4:9.

    PubMed  PubMed Central  Google Scholar 

  60. Moller AR, Moller MB, Yokota M. Some forms of tinnitus may involve the extralemniscal auditory pathway. Laryngoscope. 1992;102(10):1165–71.

    Article  CAS  PubMed  Google Scholar 

  61. Kaiser J, Hertrich I, Ackermann H, Mathiak K, Lutzenberger W. Hearing lips: gamma-band activity during audiovisual speech perception. Cereb Cortex. 2005;15(5):646–53.

    Article  PubMed  Google Scholar 

  62. Kanaya S, Yokosawa K. Perceptual congruency of audio-visual speech affects ventriloquism with bilateral visual stimuli. Psychon Bull Rev. 2011;18(1):123–8.

    Article  PubMed  Google Scholar 

  63. Jousmaki V, Hari R. Parchment-skin illusion: sound-biased touch. Curr Biol. 1998;8(6):R190.

    Article  CAS  PubMed  Google Scholar 

  64. Shore SE, Zhou J. Somatosensory influence on the cochlear nucleus and beyond. Hear Res. 2006;216–217:90–9.

    Article  PubMed  Google Scholar 

  65. Trudeau-Fisette P, Ito T, Menard L. Auditory and somatosensory interaction in speech perception in children and adults. Front Hum Neurosci. 2019;13:344.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ohashi H, Ito T. Recalibration of auditory perception of speech due to orofacial somatosensory inputs during speech motor adaptation. J Neurophysiol. 2019;122(5):2076–84.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Meredith MA. On the neuronal basis for multisensory convergence: a brief overview. Brain Res Cogn Brain Res. 2002;14(1):31–40.

    Article  PubMed  Google Scholar 

  68. Riley JW. Poems & prose sketches. Portable poetry; 2017.

    Google Scholar 

  69. Winer JA, Lee CC. The distributed auditory cortex. Hear Res. 2007;229(1–2):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  70. De Ridder D. A heuristic pathophysiological model of tinnitus. In: Moller A, Langguth B, De Ridder D, Kleinjung T, editors. Textbook of tinnitus. New York: Springer; 2011. p. 171–98.

    Chapter  Google Scholar 

  71. Strominger NL, Nelson LR, Dougherty WJ. Second order auditory pathways in the chimpanzee. J Comp Neurol. 1977;172(2):349–65.

    Article  CAS  PubMed  Google Scholar 

  72. Parvizi J, Damasio AR. Differential distribution of calbindin D28k and parvalbumin among functionally distinctive sets of structures in the macaque brainstem. J Comp Neurol. 2003;462(2):153–67.

    Article  CAS  PubMed  Google Scholar 

  73. Tennigkeit F, Schwarz DW, Puil E. Mechanisms for signal transformation in lemniscal auditory thalamus. J Neurophysiol. 1996;76(6):3597–608.

    Article  CAS  PubMed  Google Scholar 

  74. McCormick DA, Feeser HR. Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience. 1990;39(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  75. Jones EG. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 2001;24(10):595–601.

    Article  CAS  PubMed  Google Scholar 

  76. Jones EG. Viewpoint: the core and matrix of thalamic organization. Neuroscience. 1998;85(2):331–45.

    Article  CAS  PubMed  Google Scholar 

  77. Jones EG. Chemically defined parallel pathways in the monkey auditory system. Ann N Y Acad Sci. 2003;999:218–33.

    Article  CAS  PubMed  Google Scholar 

  78. Chiry O, Tardif E, Magistretti PJ, Clarke S. Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci. 2003;17(2):397–410.

    Article  PubMed  Google Scholar 

  79. Bordi F, LeDoux JE. Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res. 1994;98(2):261–74.

    Article  CAS  PubMed  Google Scholar 

  80. Calford MB. The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci. 1983;3(11):2350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu B, Senatorov V, Mooney D. Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol. 1994;479(Pt 2):217–31.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sherman SM, Koch C. The synaptic organization of the brain. Oxford: Oxford University Press; 1998.

    Google Scholar 

  83. Disterhoft JF, Olds J. Differential development of conditioned unit changes in thalamus and cortex of rat. J Neurophysiol. 1972;35(5):665–79.

    Article  CAS  PubMed  Google Scholar 

  84. Kawaguchi Y, Kubota Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol. 1993;70(1):387–96.

    Article  CAS  PubMed  Google Scholar 

  85. Kawaguchi Y. Distinct firing patterns of neuronal subtypes in cortical synchronized activities. J Neurosci. 2001;21(18):7261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Solbach S, Celio MR. Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol (Berl). 1991;184(2):103–24.

    Article  CAS  PubMed  Google Scholar 

  87. Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15(8):303–8.

    Article  CAS  PubMed  Google Scholar 

  88. Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci U S A. 2000;97(24):13372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bordi F, LeDoux J, Clugnet MC, Pavlides C. Single-unit activity in the lateral nucleus of the amygdala and overlying areas of the striatum in freely behaving rats: rates, discharge patterns, and responses to acoustic stimuli. Behav Neurosci. 1993;107(5):757–69.

    Article  PubMed  Google Scholar 

  90. Bartlett EL, Smith PH. Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol. 1999;81(5):1999–2016.

    Article  CAS  PubMed  Google Scholar 

  91. He J, Hu B. Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol. 2002;88(4):2152–6.

    Article  PubMed  Google Scholar 

  92. Mooney DM, Zhang L, Basile C, et al. Distinct forms of cholinergic modulation in parallel thalamic sensory pathways. Proc Natl Acad Sci U S A. 2004;101(1):320–4.

    Article  CAS  PubMed  Google Scholar 

  93. Sherman SM. A wake-up call from the thalamus. Nat Neurosci. 2001;4(4):344–6.

    Article  CAS  PubMed  Google Scholar 

  94. Sherman SM. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 2001;24(2):122–6.

    Article  CAS  PubMed  Google Scholar 

  95. Swadlow HA, Gusev AG. The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci. 2001;4(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  96. Ramcharan EJ, Cox CL, Zhan XJ, Sherman SM, Gnadt JW. Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J Neurophysiol. 2000;84(4):1982–7.

    Article  CAS  PubMed  Google Scholar 

  97. Tardif E, Chiry O, Probst A, Magistretti PJ, Clarke S. Patterns of calcium-binding proteins in human inferior colliculus: identification of subdivisions and evidence for putative parallel systems. Neuroscience. 2003;116(4):1111–21.

    Article  CAS  PubMed  Google Scholar 

  98. Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev. 2002;82(3):601–36.

    Article  PubMed  Google Scholar 

  99. Forster CR, Illing RB. Plasticity of the auditory brainstem: cochleotomy-induced changes of calbindin-D28k expression in the rat. J Comp Neurol. 2000;416(2):173–87.

    Article  CAS  PubMed  Google Scholar 

  100. Caicedo A, d’Aldin C, Eybalin M, Puel JL. Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem. J Comp Neurol. 1997;378(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  101. Garcia MM, Edward R, Brennan GB, Harlan RE. Deafferentation-induced changes in protein kinase C expression in the rat cochlear nucleus. Hear Res. 2000;147(1–2):113–24.

    Article  CAS  PubMed  Google Scholar 

  102. Rausell E, Cusick CG, Taub E, Jones EG. Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type a receptors at thalamic levels. Proc Natl Acad Sci U S A. 1992;89(7):2571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Itoh K, Kamiya H, Mitani A, Yasui Y, Takada M, Mizuno N. Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res. 1987;400(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  104. Moller AR. Hearing : its physiology and pathophysiology. 1st ed. San Diego: Academic Press; 2000.

    Google Scholar 

  105. Szczepaniak WS, Moller AR. Interaction between auditory and somatosensory systems: a study of evoked potentials in the inferior colliculus. Electroencephalogr Clin Neurophysiol. 1993;88(6):508–15.

    Article  CAS  PubMed  Google Scholar 

  106. Leinonen L, Hyvarinen J, Sovijarvi AR. Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp Brain Res. 1980;39(2):203–15.

    Article  CAS  PubMed  Google Scholar 

  107. Hu B. Functional organization of lemniscal and nonlemniscal auditory thalamus. Exp Brain Res. 2003;153(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  108. Lee CC. Exploring functions for the non-lemniscal auditory thalamus. Front Neural Circuits. 2015;9:69.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Moller AR, Rollins PR. The non-classical auditory pathways are involved in hearing in children but not in adults. Neurosci Lett. 2002;319(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou J, Shore S. Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the Guinea pig. J Comp Neurol. 2006;495(1):100–12.

    Article  PubMed  Google Scholar 

  111. Cardon G, Sharma A. Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Front Hum Neurosci. 2018;12:172.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mao YT, Pallas SL. Compromise of auditory cortical tuning and topography after cross-modal invasion by visual inputs. J Neurosci. 2012;32(30):10338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li H, Mizuno N. Single neurons in the spinal trigeminal and dorsal column nuclei project to both the cochlear nucleus and the inferior colliculus by way of axon collaterals: a fluorescent retrograde double-labeling study in the rat. Neurosci Res. 1997;29(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  114. Schofield BR, Coomes DL. Auditory cortical projections to the cochlear nucleus in Guinea pigs. Hear Res. 2005;199(1–2):89–102.

    Article  PubMed  Google Scholar 

  115. Shore SE, Roberts LE, Langguth B. Maladaptive plasticity in tinnitus--triggers, mechanisms and treatment. Nat Rev Neurol. 2016;12(3):150–60.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhou J, Nannapaneni N, Shore S. Vessicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. J Comp Neurol. 2007;500(4):777–87.

    Article  CAS  PubMed  Google Scholar 

  117. Zeng C, Nannapaneni N, Zhou J, Hughes LF, Shore S. Cochlear damage changes the distribution of vesicular glutamate transporters associated with auditory and nonauditory inputs to the cochlear nucleus. J Neurosci. 2009;29(13):4210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zeng C, Yang Z, Shreve L, Bledsoe S, Shore S. Somatosensory projections to cochlear nucleus are upregulated after unilateral deafness. J Neurosci. 2012;32(45):15791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Basura GJ, Koehler SD, Shore SE. Multi-sensory integration in brainstem and auditory cortex. Brain Res. 2012;1485:95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S. Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus--possible basis for tinnitus-related hyperactivity? J Neurosci. 2012;32(5):1660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang J, Guan Z. Pathways involved in somatosensory electrical modulation of dorsal cochlear nucleus activity. Brain Res. 2007;1184:121–31.

    Article  CAS  PubMed  Google Scholar 

  122. Kanold PO, Young ED. Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J Neurosci. 2001;21(19):7848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aitkin LM. The auditory midbrain, structure, and function in the central auditory pathway. Clifton: Humana Press; 1986.

    Book  Google Scholar 

  124. Rubinstein B, Axelsson A, Carlsson GE. Prevalence of signs and symptoms of craniomandibular disorders in tinnitus patients. J Craniomandib Disord. 1990;4(3):186–92.

    CAS  PubMed  Google Scholar 

  125. Pinchoff RJ, Burkard RF, Salvi RJ, Coad ML, Lockwood AH. Modulation of tinnitus by voluntary jaw movements. Am J Otol. 1998;19(6):785–9.

    CAS  PubMed  Google Scholar 

  126. Levine RA. Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am J Otolaryngol. 1999;20(6):351–62.

    Article  CAS  PubMed  Google Scholar 

  127. Lee HY, Kim SJ, Choi JY. Somatic modulation in tinnitus: clinical characteristics and treatment outcomes. J Int Adv Otol. 2020;16(2):213–7.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ralli M, Greco A, Turchetta R, Altissimi G, de Vincentiis M, Cianfrone G. Somatosensory tinnitus: current evidence and future perspectives. J Int Med Res. 2017;45(3):933–47.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sanchez TG, Guerra GC, Lorenzi MC, Brandao AL, Bento RF. The influence of voluntary muscle contractions upon the onset and modulation of tinnitus. Audiol Neurootol. 2002;7(6):370–5.

    Article  PubMed  Google Scholar 

  130. Won JY, Yoo S, Lee SK, et al. Prevalence and factors associated with neck and jaw muscle modulation of tinnitus. Audiol Neurootol. 2013;18(4):261–73.

    Article  PubMed  Google Scholar 

  131. Michiels S, Ganz Sanchez T, Oron Y, et al. Diagnostic criteria for somatosensory tinnitus: a Delphi process and face-to-face meeting to establish consensus. Trends Hear. 2018;22:2331216518796403.

    PubMed  PubMed Central  Google Scholar 

  132. Michiels S, Cardon E, Gilles A, Goedhart H, Vesala M, Schlee W. Somatosensory tinnitus diagnosis: diagnostic value of existing criteria. Ear Hear. 2021;43(1):143–9.

    Article  Google Scholar 

  133. Levine RA, Nam EC, Melcher J. Somatosensory pulsatile tinnitus syndrome: somatic testing identifies a pulsatile tinnitus subtype that implicates the somatosensory system. Trends Amplif. 2008;12(3):242–53.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Levine RA. Somatosensory pulsatile tinnitus syndrome (SSPT) revisited. Int Tinnitus J. 2021;25(1):39–45.

    Article  PubMed  Google Scholar 

  135. van der Wal A, Michiels S, Van de Heyning P, et al. Reduction of somatic tinnitus severity is mediated by improvement of temporomandibular disorders. Otol Neurotol. 2022;43(3):e309–15.

    Article  PubMed  Google Scholar 

  136. van der Wal A, Van de Heyning P, Gilles A, et al. Prognostic indicators for positive treatment outcome after multidisciplinary orofacial treatment in patients with somatosensory tinnitus. Front Neurosci. 2020;14:561038.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Michiels S, Van de Heyning P, Truijen S, Hallemans A, De Hertogh W. Does multi-modal cervical physical therapy improve tinnitus in patients with cervicogenic somatic tinnitus? Man Ther. 2016;26:125–31.

    Article  CAS  PubMed  Google Scholar 

  138. Michiels S, Van de Heyning P, Truijen S, Hallemans A, De Hertogh W. Prognostic indicators for decrease in tinnitus severity after cervical physical therapy in patients with cervicogenic somatic tinnitus. Musculoskelet Sci Pract. 2017;29:33–7.

    Article  CAS  PubMed  Google Scholar 

  139. Park JM, Kim WJ, Han JS, Park SY, Park SN. Management of palatal myoclonic tinnitus based on clinical characteristics: a large case series study. Acta Otolaryngol. 2020;140(7):553–7.

    Article  PubMed  Google Scholar 

  140. Herd CP, Tomlinson CL, Rick C, et al. Cochrane systematic review and meta-analysis of botulinum toxin for the prevention of migraine. BMJ Open. 2019;9(7):e027953.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Affatato O, Moulin TC, Pisanu C, et al. High efficacy of onabotulinumtoxinA treatment in patients with comorbid migraine and depression: a meta-analysis. J Transl Med. 2021;19(1):133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Langguth B, Hund V, Landgrebe M, Schecklmann M. Tinnitus patients with comorbid headaches: the influence of headache type and laterality on tinnitus characteristics. Front Neurol. 2017;8:440.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nowaczewska M, Wicinski M, Straburzynski M, Kazmierczak W. The prevalence of different types of headache in patients with subjective tinnitus and its influence on tinnitus parameters: a prospective clinical study. Brain Sci. 2020;10(11):776.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ranoux D, Levine RA. Botulinum toxin can abolish and/or quiet tinnitus associated with chronic migraine: Serendipidous observations. Int Tinnitus J. 2022;25(2):133–6.

    PubMed  Google Scholar 

  145. Lainez MJ, Piera A. Botulinum toxin for the treatment of somatic tinnitus. Prog Brain Res. 2007;166:335–8.

    Article  CAS  PubMed  Google Scholar 

  146. Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache. 2003;43(Suppl 1):S16–24.

    Article  PubMed  Google Scholar 

  147. Herraiz C, Toledano A, Diges I. Trans-electrical nerve stimulation (TENS) for somatic tinnitus. Prog Brain Res. 2007;166:389–94.

    Article  CAS  PubMed  Google Scholar 

  148. Shulman A. External electrical tinnitus suppression: a review. Am J Otol. 1987;8(6):479–84.

    CAS  PubMed  Google Scholar 

  149. Shulman A, Tonndorf J, Goldstein B. Electrical tinnitus control. Acta Otolaryngol. 1985;99(3–4):318–25.

    Article  CAS  PubMed  Google Scholar 

  150. Hiller W, Janca A, Burke KC. Association between tinnitus and somatoform disorders. J Psychosom Res. 1997;43(6):613–24.

    Article  CAS  PubMed  Google Scholar 

  151. Wright EF, Gullickson DC. Dental pulpalgia contributing to bilateral preauricular pain and tinnitus. J Orofac Pain. 1996;10(2):166–8.

    CAS  PubMed  Google Scholar 

  152. Chole RA, Parker WS. Tinnitus and vertigo in patients with temporomandibular disorder. Arch Otolaryngol Head Neck Surg. 1992;118(8):817–21.

    Article  CAS  PubMed  Google Scholar 

  153. Morgan DH. Tinnitus of TMJ origin: a preliminary report. Cranio. 1992;10(2):124–9.

    Article  CAS  PubMed  Google Scholar 

  154. Gelb H, Gelb ML, Wagner ML. The relationship of tinnitus to craniocervical mandibular disorders. Cranio. 1997;15(2):136–43.

    Article  CAS  PubMed  Google Scholar 

  155. Cacace AT, Cousins JP, Parnes SM, et al. Cutaneous-evoked tinnitus. II. Review of neuroanatomical, physiological and functional imaging studies. Audiol Neurootol. 1999;4(5):258–68.

    Article  CAS  PubMed  Google Scholar 

  156. Cacace AT, Cousins JP, Parnes SM, et al. Cutaneous-evoked tinnitus. I. Phenomenology, psychophysics and functional imaging. Audiol Neurootol. 1999;4(5):247–57.

    Article  CAS  PubMed  Google Scholar 

  157. Vanneste S, Plazier M, Van de Heyning P, De Ridder D. Transcutaneous electrical nerve stimulation (TENS) of upper cervical nerve (C2) for the treatment of somatic tinnitus. Exp Brain Res. 2010;204(2):283–7.

    Article  PubMed  Google Scholar 

  158. De Ridder D, Vanneste S. Multitarget surgical neuromodulation: combined C2 and auditory cortex implantation for tinnitus. Neurosci Lett. 2015;591:202–6.

    Article  PubMed  Google Scholar 

  159. De Ridder D, Vanneste S, Menovsky T, Langguth B. Surgical brain modulation for tinnitus: the past, present and future. J Neurosurg Sci. 2012;56(4):323–40.

    PubMed  Google Scholar 

  160. Aydemir G, Tezer MS, Borman P, Bodur H, Unal A. Treatment of tinnitus with transcutaneous electrical nerve stimulation improves patients’ quality of life. J Laryngol Otol. 2006;120(6):442–5.

    Article  CAS  PubMed  Google Scholar 

  161. Marks KL, Martel DT, Wu C, et al. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med. 2018;10(422):eaal3175.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Conlon B, Langguth B, Hamilton C, et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med. 2020;12(564):eabb2830.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk De Ridder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Møller, A.R., De Ridder, D. (2024). Tinnitus and the Somatosensory System. In: Schlee, W., Langguth, B., De Ridder, D., Vanneste, S., Kleinjung, T., Møller, A.R. (eds) Textbook of Tinnitus. Springer, Cham. https://doi.org/10.1007/978-3-031-35647-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35647-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35646-9

  • Online ISBN: 978-3-031-35647-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics