Skip to main content

Piezocatalysis and Piezophototropic Effect on Catalysis

  • Chapter
  • First Online:
Piezotronics and Piezo-Phototronics

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 567 Accesses

Abstract

The piezocatalysis has emerged as one of the effective strategies for catalysis, which uses piezoelectric polarization charges on surfaces to enhance chemical processes. Through the integration of piezoelectricity, photoexcitation, and semiconductor properties, the built-in electric field by mechanical stimulation-induced polarization can serve as a flexible autovalve to modulate the charge transfer pathway and facilitate carrier separation both in the bulk phase and at surfaces of semiconductors. And the piezotronics can also allow the (electro)catalysis to occur in the unilluminated surfaces, opening a new venue for mechanical stimulated catalysis! This chapter focuses on providing insights into the fundamentals of piezocatalysis, piezoenhanced photocatalysis, or photoelectrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J. Zou, Z.L. Wang, Advances in Piezo-phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis (Review). Adv. Energy Mater. 10, 2000214 (2020)

    Article  Google Scholar 

  2. Y. Zhang, Y. Liu, Z.L. Wang, Fundamental theory of piezotronics. Adv. Mater. 23(27), 3004–3013 (2011)

    Article  Google Scholar 

  3. F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, The role of polarization in photocatalysis. Angew. Chem. Int. Ed. 58(30), 10061–10073 (2019)

    Article  Google Scholar 

  4. Y.W. Feng, L.L. Ling, Y.X. Wang, Z.M. Xu, F.L. Cao, H.X. Li, Z.F. Bian, Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy 40, 481–486 (2017)

    Article  Google Scholar 

  5. Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook. Appl. Catal. B 241, 256–269 (2019)

    Article  Google Scholar 

  6. Z.L. Wang, Progress in piezotronics and piezo-phototronics. Adv. Mater. 24(34), 4632–4646 (2012)

    Article  Google Scholar 

  7. Y. Chen, L. Wang, R.J. Gao, Y.C. Zhang, L. Pan, C.Y. Huang, K. Liu, X.Y. Chang, X.W. Zhang, J.J. Zou, Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical Water splitting. Appl. Catal. B 259, 118079 (2019)

    Article  Google Scholar 

  8. J.P. Ma, J. Ren, Y.M. Jia, Z. Wu, L. Chen, N.O. Haugen, H.T. Huang, Y.S. Liu, High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 62, 376–383 (2019)

    Article  Google Scholar 

  9. Z.J. Wang, T.C. Hu, H.X. He, Y.M. Fu, X. Zhang, J. Sun, L.L. Xing, B.D. Liu, Y. Zhang, X.Y. Xue, Enhanced H2 production of TiO2/ZnO nanowires Co-using solar and mechanical energy through piezo-photocatalytic effect. ACS Sustain. Chem. Eng. 6(8), 10162–10172 (2018)

    Article  Google Scholar 

  10. W.S. Tong, Y.H. Zhang, H.W. Huang, K. Xiao, S.X. Yu, Y. Zhou, L.P. Liu, H.T. Li, L. Liu, T. Huang, M. Li, Q. Zhang, R.F. Du, Q. An, A highly sensitive hybridized soft piezophotocatalyst driven by gentle mechanical disturbances in water. Nano Energy 53, 513–523 (2018)

    Article  Google Scholar 

  11. H. Zou, X. Li, W. Peng, W. Wu, R. Yu, C. Wu, W. Ding, F. Hu, R. Liu, Y. Zi, Z.L. Wang, Piezo-phototronic effect on selective electron or hole transport through depletion region of vis–NIR broadband photodiode. Adv. Mater. 29(29), 1701412 (2017)

    Article  Google Scholar 

  12. J. Sun, X. Zhang, Y. Lang, J. Bian, R. Gao, P. Li, Y. Wang, C. Li, Piezo-phototronic effect improved performance of n-ZnO nano-arrays/p-Cu2O film based pressure sensor synthesized on flexible Cu foil. Nano Energy 32, 96–104 (2017)

    Article  Google Scholar 

  13. Y. Hu, Y. Chang, P. Fei, R.L. Snyder, Z.L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4(2), 1234–1240 (2010)

    Article  Google Scholar 

  14. H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z.L. Wang, Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 15(4), 2372–2379 (2015)

    Article  ADS  Google Scholar 

  15. D. Hong, W. Zang, X. Guo, Y. Fu, H. He, J. Sun, L. Xing, B. Liu, X. Xue, High piezo-photocatalytic efficiency of CuS/ZnO nanowires using both solar and mechanical energy for degrading organic dye. ACS Appl. Mater. Interfaces. 8(33), 21302–21314 (2016)

    Article  Google Scholar 

  16. C. Sun, Y.M. Fu, Q. Wang, L.L. Xing, B.D. Liu, X.Y. Xue, Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag 2 O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Adv. 6(90), 87446–87453 (2016)

    Article  ADS  Google Scholar 

  17. Y. Ye, K.Q. Wang, X.Y. Huang, R. Lei, Y. Zhao, P. Liu, Integration of piezoelectric effect into a Au/ZnO photocatalyst for efficient charge separation. Catal. Sci. Technol. 9(14), 3771–3778 (2019)

    Article  Google Scholar 

  18. X.Y. Chen, L.F. Liu, Y.W. Feng, L.F. Wang, Z.F. Bian, H.X. Li, Z.L. Wang, Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Mater. Today 20(9), 501–506 (2017)

    Article  Google Scholar 

  19. H. Li, Y. Yu, M.B. Starr, Z. Li, X. Wang, Piezotronic-enhanced photoelectrochemical reactions in Ni (OH)2-decorated ZnO photoanodes. J. Phys. Chem. Lett. 6(17), 3410–3416 (2015)

    Article  Google Scholar 

  20. J. Shi, M.B. Starr, H. Xiang, Y. Hara, M.A. Anderson, J.H. Seo, Z. Ma, X. Wang, Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 11(12), 5587–5593 (2011)

    Article  ADS  Google Scholar 

  21. X.Y. Xue, W.L. Zang, P. Deng, Q. Wang, L.L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 13, 414–422 (2015)

    Article  Google Scholar 

  22. Y. Bai, J.Z. Zhao, Z.L. Lv, K. Lu, Enhanced piezo-phototronic effect of ZnO nanorod arrays for harvesting low mechanical energy. Ceram. Int. 45(12), 15065–15072 (2019)

    Article  Google Scholar 

  23. J.H. Chang, H.N. Lin, Exploitation of piezoelectricity for enhancing photocatalytic activity of ZnO nanowires. Mater. Lett. 132, 134–137 (2014)

    Article  Google Scholar 

  24. L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, Z.L. Wang, Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10(2), 2636–2643 (2016)

    Article  Google Scholar 

  25. Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun, Q. Liao, Z. Zhang, Y. Zhang, Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv. Func. Mater. 29(15), 1808032 (2019)

    Article  Google Scholar 

  26. K.S. Hong, H.F. Xu, H. Konishi, X.C. Li, Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 1(6), 997–1002 (2010)

    Article  Google Scholar 

  27. Y. Dai, C. Wu, Z. Wu, Z. Zhao, L. Li, Y. Lu, Z.L. Wang, Ferroelectricity-enhanced piezo-phototronic effect in 2D V-doped ZnO nanosheets. Adv. Sci. 6(16), 1900314 (2019)

    Article  Google Scholar 

  28. L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu, X. Feng, T. Li, Z.L. Wang, Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core–shell nanowire array. Adv. Sci. 4(1), 1600185 (2017)

    Article  Google Scholar 

  29. Y.X. Li, Z.M. Zhang, W.H. Han, C.J. Jiang, E.Q. Xie, Analysis on the piezotronic effect in a strained piezo-Schottky junction with AC impedance spectroscopy. Nano Energy 36, 118–125 (2017)

    Article  Google Scholar 

  30. Y.Z. Zhang, X.L. Huang, J. Yeom, A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination. Nano-Micro Lett. 11(1), 1–14 (2019)

    Article  ADS  Google Scholar 

  31. X. Xu, Y. Jia, L. Xiao, Z. Wu, Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere 193, 1143–1148 (2018)

    Article  ADS  Google Scholar 

  32. Y. Zhang, C.H. Liu, G.L. Zhu, X. Huang, W. Liu, W.G. Hu, M. Song, W.D. He, J. Liu, J.Y. Zhai, Piezotronic-effect-enhanced Ag2S/ZnO photocatalyst for organic dye degradation. RSC Adv. 7(76), 48176–48183 (2017)

    Article  ADS  Google Scholar 

  33. L.L. Zhang, D. Zhu, H.X. He, Q. Wang, L.L. Xing, X.Y. Xue, Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect. J. Phys. Chem. Solids 102, 27–33 (2017)

    Article  ADS  Google Scholar 

  34. A. Sarkar, A.K. Katiyar, S. Mukherjee, S.K. Ray, Enhanced UV–visible photodetection characteristics of a flexible Si membrane-ZnO heterojunction utilizing piezo-phototronic effect. J. Phys. D Appl. Phys. 50(14), 145104 (2017)

    Article  ADS  Google Scholar 

  35. H. You, Z. Wu, Y. Jia, X. Xu, Y. Xia, Z. Han, Y. Wang, High-efficiency and mechano-/photo-bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere 183, 528–535 (2017)

    Article  ADS  Google Scholar 

  36. Z.F. Liu, Q.J. Cai, C.H. Ma, J. Zhang, J.Q. Liu, Photoelectrochemical properties and growth mechanism of varied ZnO nanostructures. New J. Chem. 41(16), 7946–7952 (2017)

    Article  Google Scholar 

  37. H. Wang, X. Liu, S.L. Wang, L. Li, Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photoelectrochemical activity. Appl. Catal. B 222, 209–218 (2018)

    Article  Google Scholar 

  38. K. Wang, Z. Fang, X. Huang, W. Feng, Y. Wang, B. Wang, P. Liu, Enhanced selectivity of methane production for photocatalytic reduction by the piezoelectric effect. Chem. Commun. 53(70), 9765–9768 (2017)

    Article  Google Scholar 

  39. Y.T. Hong, J.P. Ma, Z. Wu, J.S. Ying, H.L. You, Y.M. Jia, Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials. Acta Physica Sinica 67, 107702 (2018)

    Article  Google Scholar 

  40. T.T.A. Lummen, J. Leung, A. Kumar, X. Wu, Y. Ren, B.K. VanLeeuwen, R.C. Haislmaier, M. Holt, K. Lai, S.V. Kalinin, V. Gopalan, Emergent low-symmetry phases and large property enhancements in ferroe lectric KNbO3 bulk crystals. Adv. Mater. 29(31), 1700530 (2017)

    Article  Google Scholar 

  41. P.G. Kang, T.K. Lee, C.W. Ahn, I.W. Kim, H.H. Lee, S.B. Choi, K.D. Sung, J.H. Jung, Vertically aligned epitaxial KNbO3 nanorod array for piezoelectric energy harvester and second harmonic generator. Nano Energy 17, 261–268 (2015)

    Article  Google Scholar 

  42. D.F. Yu, Z.H. Liu, J.M. Zhang, S. Li, Z.C. Zhao, L.F. Zhu, W.S. Liu, Y.H. Lin, H. Liu, Z.T. Zhang, Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: piezo-photocatalytic and ferro-photoelectrochemical effects. Nano Energy 58, 695–705 (2019)

    Article  Google Scholar 

  43. S. Singh, N. Khare, Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: realizing an efficient piezo-photoanode and piezo-photocatalyst. Nano Energy 38, 335–341 (2017)

    Article  Google Scholar 

  44. S. Singh, N. Khare, Flexible PVDF/Cu/PVDF-NaNbO3 photoanode with ferroelectric properties: an efficient tuning of photoelectrochemical water splitting with electric field polarization and piezophototronic effect. Nano Energy 42, 173–180 (2017)

    Article  Google Scholar 

  45. Q.P. Ding, Y.P. Yuan, X. Xiong, R.P. Li, H.B. Huang, Z.S. Li, T. Yu, Z.G. Zou, S.G. Yang, Enhanced photocatalytic water splitting properties of KNbO3 nanowires synthesized through hydrothermal method. J. Phys. Chem. C 112(48), 18846–18848 (2008)

    Article  Google Scholar 

  46. S. Jia, Y. Su, B. Zhang, Z. Zhao, S. Li, Y. Zhang, P. Li, M. Xu, R. Ren, Few-layer MoS2 nanosheet-coated KNbO3 nanowire heterostructures: piezo-photocatalytic effect enhanced hydrogen production and organic pollutant degradation. Nanoscale 11(16), 7690–7700 (2019)

    Article  Google Scholar 

  47. S.S. Wang, Z. Wu, J. Chen, J.P. Ma, J.S. Ying, S.C. Cui, S.G. Yu, Y.M. Hu, J.H. Zhao, Y.M. Jia, Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation. Ceram. Int. 45(9), 11703–11708 (2019)

    Article  Google Scholar 

  48. T. Zhang, W. Lei, P. Liu, J.A. Rodriguez, J. Yu, Y. Qi, G. Liu, M. Liu, Insights into the structure–photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires. Chem. Sci. 6(7), 4118–4123 (2015)

    Article  Google Scholar 

  49. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  ADS  Google Scholar 

  50. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rodel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4(4), 041305 (2017)

    Article  ADS  Google Scholar 

  51. K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10(12), 4939–4943 (2010)

    Article  ADS  Google Scholar 

  52. G. Cilaveni, K.V.A. Kumar, S.S.K. Raavi, C. Subrahmanyam, S. Asthana, Control over relaxor, piezo-photocatalytic and energy storage properties in Na0. 5Bi0. 5TiO3 via processing methodologies. J. Alloys Compounds, 798, 540–552 (2019)

    Google Scholar 

  53. S.C. Tu, H.W. Huang, T.R. Zhang, Y.H. Zhanga, Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: photocatalysis and piezoelectric-catalysis and mechanism insight. Appl. Catal. B 219, 550–562 (2017)

    Article  Google Scholar 

  54. L.M. Guo, C.F. Zhong, J.Q. Cao, Y.N. Hao, M. Lei, K. Bi, Q.J. Sun, Z.L. Wang, Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy 62, 513–520 (2019)

    Article  Google Scholar 

  55. W. Yang, Y. Yu, M.B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, X. Wang, Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes. N ano letters 15(11), 7574–7580 (2015)

    Article  ADS  Google Scholar 

  56. Z.R. Liu, L.W. Wang, X. Yu, J. Zhang, R.Q. Yang, X.D. Zhang, Y.C. Ji, M.Q. Wu, L. Deng, L.L. Li, Z.L. Wang, Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction. Adv. Func. Mater. 29(41), 1807279 (2019)

    Article  Google Scholar 

  57. J. Wu, N. Qin, D.H. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 45, 44–51 (2018)

    Article  Google Scholar 

  58. X.L. Xu, Z. Wu, L.B. Xiao, Y.M. Jia, J.P. Ma, F.F. Wang, L. Wang, M.S. Wang, H.T. Huang, Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis. J. Alloy. Compd. 762, 915–921 (2018)

    Article  Google Scholar 

  59. W. Lv, L.J. Kong, S.Y. Lan, J.X. Feng, Y. Xiong, S.H. Tian, Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process. J. Chem. Technol. Biotechnol. 92(1), 152–156 (2017)

    Article  Google Scholar 

  60. S.Y. Xu, Z.H. Liu, M.L. Zhang, L.M. Guo, Piezotronics enhanced photocatalytic activities of Ag-BaTiO3 plasmonic photocatalysts. J. Alloy. Compd. 801, 483–488 (2019)

    Article  Google Scholar 

  61. S.Y. Xu, L.M. Guo, Q.J. Sun, Z.L. Wang, Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv. Func. Mater. 29(13), 1808737 (2019)

    Article  Google Scholar 

  62. J.X. Feng, J.X. Sun, X.S. Liu, J.Z. Zhu, Y. Xiong, S.H. Tian, Enhancement and mechanism of nano-BaTiO3 piezocatalytic degradation of tricyclazole by co-loading Pt and RuO 2. Environ. Sci. Nano 6(7), 2241–2252 (2019)

    Article  Google Scholar 

  63. X. Zhou, S. Wu, C. Li, F. Yan, H. Bai, B. Shen, H. Zeng, J. Zhai, Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high-efficiency catalytic oxidation. Nano Energy 66, 104127 (2019)

    Article  Google Scholar 

  64. J. Wu, Q. Xu, E. Lin, B. Yuan, N. Qin, S.K. Thatikonda, D. Bao, Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces. 10(21), 17842–17849 (2018)

    Article  Google Scholar 

  65. J.X. Feng, Y. Fu, X.S. Liu, S.H. Tian, S.Y. Lan, Y. Xiong, Significant improvement and mechanism of ultrasonic inactivation to escherichia coli with piezoelectric effect of hydrothermally synthesized t-BaTiO3. ACS Sustain. Chem. Eng. 6(5), 6032–6041 (2018)

    Article  Google Scholar 

  66. N. Jia, Q. Xing, G. Xia, J. Sun, R. Song, W. Huang, Enhanced β-crystalline phase in poly (vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater. Lett. 139, 212–215 (2015)

    Article  Google Scholar 

  67. Y.L. Zhao, Q.L. Liao, G.J. Zhang, Z. Zhang, Q.J. Liang, X.Q. Liao, Y. Zhang, High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015)

    Article  Google Scholar 

  68. B.Y. Dai, H.M. Huang, W. Wang, Y.K. Chen, C.H. Lu, J.H. Kou, L.Z. Wang, F.L. Wang, Z.Z. Xu, Greatly enhanced photocatalytic activity by organic flexible piezoelectric PVDF induced spatial electric field. Catal. Sci. Technol. 7(23), 5594–5601 (2017)

    Article  Google Scholar 

  69. F. Xue, L. Chen, J. Chen, J. Liu, L. Wang, M. Chen, Y. Pang, X. Yang, G. Gao, J. Zhai, Z.L. Wang, p-Type MoS2 and n-Type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 28(17), 3391–3398 (2016)

    Article  Google Scholar 

  70. B. Narayan, S. Adhikari, G. Madras, R. Ranjan, Trapping a metastable ferroelectric phase by size reduction in semiconducting ferroelectric BiFeO3−PbTiO3 and its implications for photocatalytic response. Phys. Rev. Appl. 7(2), 024018 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z.L., Zhang, Y., Hu, W. (2023). Piezocatalysis and Piezophototropic Effect on Catalysis. In: Piezotronics and Piezo-Phototronics. Microtechnology and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-031-31497-1_14

Download citation

Publish with us

Policies and ethics