Skip to main content

Introduction and Fundamentals

  • Chapter
  • First Online:
Piezotronics and Piezo-Phototronics

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 468 Accesses

Abstract

Starting from the road map for micro-electronics, the focus of future electronics will be on functionalities toward personal, portable, polymer, sensor, and self-powering applications. The integration of these characteristics with the fast speed and high density as defined by Moore’s law will lead to the development of smart systems and self-powered systems. This chapter first introduces the basic physics of piezotronics and piezophototronics from band structure theory. Then blueprints for future impacts and applications of piezotroncis and piezophototronics are presented. The role anticipated to be played by piezotronics in the era of “Beyond Moore” is similar to the mechanosensation in physiology that provides a direct human “interfacing” with CMOS technology. It presents a paradigm shift for developing revolutionary technologies for force/pressure triggered/controlled electronic devices, sensors, MEMS, human–computer interfacing, nanorobotics, touchpad, solar cell, photon detector, and light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Mechanosensation

  2. X. Wang, R. Yu, C. Jiang, W. Hu, W. Wu, Y. Ding, W. Peng, S. Li, Z.L.Wang, Piezotronic effect modulated heterojunction electron gas in AlGaN/AlN/GaN heterostructure microwire. Adv. Mater. 28(33), 7234–7242 (2016)

    Google Scholar 

  3. C. Jiang, T. Liu, C. Du, X. Huang, M. Liu, Z. Zhao, L. Li, X. Pu, J. Zhai, W. Hu, Z.L. Wang, Piezotronic effect tuned AlGaN/GaN high electron mobility transistor. Nanotechnology 28(45), 455203 (2017)

    Article  ADS  Google Scholar 

  4. J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155–2163 (2013)

    Google Scholar 

  5. Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  ADS  Google Scholar 

  6. Z.L. Wang, Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Func. Mater. 18(22), 3553 (2008)

    Article  Google Scholar 

  7. Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. Rep. 64(3–4), 33–71 (2009)

    Article  Google Scholar 

  8. Z.L. Wang, R.S. Yang, J. Zhou, Y. Qin, C. Xu, Y.F. Hu, S. Xu, Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater. Sci. Eng. Rep. 70(3–6), 320–329 (2010)

    Article  Google Scholar 

  9. Z.L. Wang, Nanogenerators for self-powered devices and systems, Georgia Institute of Technology. SMARTech Digital Repository (2011). http://hdl.handle.net/1853/39262

  10. Y.F. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Letters 7(8), 2499–2505 (2007)

    Google Scholar 

  11. Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 105(11), 113707 (2009)

    Article  ADS  Google Scholar 

  12. C.L. Sun, J. Shi, X.D. Wang, Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 108(3), 034309 (2010)

    Article  ADS  Google Scholar 

  13. X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007)

    Google Scholar 

  14. Y. Qin, X.D. Wang, Z.L. Wang, Microfibre–nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008)

    Article  ADS  Google Scholar 

  15. R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)

    Article  ADS  Google Scholar 

  16. S. Xu, Y. Qin, C. Xu, Y.G. Wei, R.S. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)

    Article  ADS  Google Scholar 

  17. G. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010)

    Article  ADS  Google Scholar 

  18. S. Xu, B.J. Hansen, Z.L. Wang, Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1(1), 93 (2010)

    Article  ADS  Google Scholar 

  19. Y.F. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Self-powered system with wireless data transmission. Nano Lett. 11(6), 2572–2577 (2011)

    Article  ADS  Google Scholar 

  20. Z.T. Li, Z.L. Wang, Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 23(1), 84–89 (2011)

    Article  MathSciNet  Google Scholar 

  21. X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006)

    Article  ADS  Google Scholar 

  22. J.H. He, C.H. Hsin, L.J. Chen, Z.L. Wang, Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19(6), 781–784 (2007)

    Article  Google Scholar 

  23. Chemical and Engineering News, January 15 issue, p. 46 (2008). http://pubs.acs.org/cen/science/85/8503sci1.html

  24. Z.L. Wang, Nanopiezotronics. Adv. Mater. 19(6), 889–892 (2007)

    Article  Google Scholar 

  25. Z.L. Wang, The new field of nanopiezotronics. Mater. Today 10(5), 20–28 (2007)

    Article  ADS  Google Scholar 

  26. Z.L. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)

    Article  Google Scholar 

  27. Y.F. Hu, Y.L. Chang, P. Fei, R.L. Snyder, Z.L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4(2), 1234–1240 (2010)

    Article  Google Scholar 

  28. Q. Yang, W.H. Wang, S. Xu, Z.L. Wang, Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11(9), 4012–4017 (2011)

    Article  ADS  Google Scholar 

  29. Q. Yang, X. Guo, W.H. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4(10), 6285–6291 (2010)

    Article  Google Scholar 

  30. M.C. Wong, L. Chen, M.K. Tsang, Y. Zhang, J.H. Hao, Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 27(30), 4488–4495 (2015)

    Article  Google Scholar 

  31. X. Wang, H. Zhang, R. Yu, L. Dong, D. Peng, A. Zhang, Y. Zhang, H. Liu, C. Pan, Z.L. Wang, Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27(14), 2324–2331 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z.L., Zhang, Y., Hu, W. (2023). Introduction and Fundamentals. In: Piezotronics and Piezo-Phototronics. Microtechnology and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-031-31497-1_1

Download citation

Publish with us

Policies and ethics