Skip to main content

An Efficient Implementation of Flux Variability Analysis for Metabolic Networks

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2022)

Abstract

Flux Variability Analysis (FVA) is an important method to analyze the range of fluxes of a metabolic network. FVA consists in performing a large number of independent optimization problems, to obtain the maximum and minimum flux through each reaction in the network. Although several strategies to make the computation more efficient have been proposed, the computation time of an FVA can still be limiting. We present a two-step procedure to accelerate the FVA computational time that exploits the large presence within metabolic networks of sets of reactions that necessarily have an identical optimal flux value or only differ by a multiplication constant. The first step identifies such sets of reactions. The second step computes the maximum and minimum flux value for just one element of each of set, reducing the total number of optimization problems compared to the classical FVA. We show that, when applied to any metabolic network model included in the BiGG database, our FVA algorithm reduces the total number of optimization problems of about 35\(\%\), and the computation time of FVA of about 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Broddrick, J.T., et al.: Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proc. Natl. Acad. Sci. 113(51), E8344–E8353 (2016)

    Article  Google Scholar 

  2. Brunk, E., et al.: Recon3d enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36(3), 272–281 (2018)

    Article  Google Scholar 

  3. Cavill, R., Jennen, D., Kleinjans, J., Briedé, J.J.: Transcriptomic and metabolomic data integration. Briefings Bioinf. 17(5), 891–901 (2016)

    Article  Google Scholar 

  4. Damiani, C., Gaglio, D., Sacco, E., Alberghina, L., Vanoni, M.: Systems metabolomics: from metabolomic snapshots to design principles. Curr. Opin. Biotechnol. 63, 190–199 (2020)

    Article  Google Scholar 

  5. Di Filippo, M., et al.: Integrate: model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Comput. Biol. 18(2), e1009337 (2022)

    Article  Google Scholar 

  6. Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: COBRapy: constraints-based reconstruction and analysis for python. BMC Syst. Biol. 7(1), 1–6 (2013)

    Article  Google Scholar 

  7. Fallahi, S., Skaug, H.J., Alendal, G.: A comparison of monte Carlo sampling methods for metabolic network models. PLoS ONE 15(7), e0235393 (2020)

    Article  Google Scholar 

  8. Galuzzi, B.G., Vanoni, M., Damiani, C.: Combining denoising of RNA-seq data and flux balance analysis for cluster analysis of single cells. BMC Bioinform. 23(6), 1–21 (2022)

    Google Scholar 

  9. Gudmundsson, S., Thiele, I.: Computationally efficient flux variability analysis. BMC Bioinform. 11(1), 1–3 (2010)

    Article  Google Scholar 

  10. Hefzi, H., et al.: A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst. 3(5), 434–443 (2016)

    Article  Google Scholar 

  11. Heirendt, L., Thiele, I., Fleming, R.M.: DistributedFBA. jl: high-level, high-performance flux balance analysis in Julia. Bioinformatics 33(9), 1421–1423 (2017)

    Google Scholar 

  12. Herrmann, H.A., Dyson, B.C., Vass, L., Johnson, G.N., Schwartz, J.M.: Flux sampling is a powerful tool to study metabolism under changing environmental conditions. NPJ Syst. Biol. Appl. 5(1), 1–8 (2019)

    Article  Google Scholar 

  13. Hyduke, D.R., Lewis, N.E., Palsson, B.Ø.: Analysis of omics data with genome-scale models of metabolism. Mol. BioSyst. 9(2), 167–174 (2013)

    Article  Google Scholar 

  14. King, Z.A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N.E., Palsson, B.O.: Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput. Biol. 11(8), e1004321 (2015)

    Article  Google Scholar 

  15. Levering, J., et al.: Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. PLoS ONE 11(5), e0155038 (2016)

    Article  Google Scholar 

  16. Mahadevan, R., Schilling, C.H.: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5(4), 264–276 (2003)

    Article  Google Scholar 

  17. Müller, A.C., Bockmayr, A.: Fast thermodynamically constrained flux variability analysis. Bioinformatics 29(7), 903–909 (2013)

    Article  Google Scholar 

  18. Nielsen, J.: Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25(3), 572–579 (2017)

    Article  Google Scholar 

  19. Norsigian, C.J., et al.: BiGG models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 48(D1), D402–D406 (2020)

    Google Scholar 

  20. Orth, J.D., Fleming, R.M., Palsson, B.Ø.: Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus 4(1) (2010)

    Google Scholar 

  21. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010)

    Article  Google Scholar 

  22. Schellenberger, J., et al.: Quantitative prediction of cellular metabolism with constraint-based models: the cobra toolbox v2. 0. Nat. Protoc. 6(9), 1290–1307 (2011)

    Google Scholar 

  23. Thiele, I., Gudmundsson, S.: Computationally efficient flux variability analysis. BMC Bioninform. 11(489), 1–3 (2010)

    Google Scholar 

  24. Thiele, I., Fleming, R.M., Bordbar, A., Schellenberger, J., Palsson, B.Ø.: Functional characterization of alternate optimal solutions of Escherichia coli’s transcriptional and translational machinery. Biophys. J . 98(10), 2072–2081 (2010)

    Article  Google Scholar 

  25. Thomas, A., Rahmanian, S., Bordbar, A., Palsson, B.Ø., Jamshidi, N.: Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance. Sci. Rep. 4(1), 1–10 (2014)

    Article  Google Scholar 

  26. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. Galuzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galuzzi, B.G., Damiani, C. (2023). An Efficient Implementation of Flux Variability Analysis for Metabolic Networks. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31183-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31182-6

  • Online ISBN: 978-3-031-31183-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics