Skip to main content

An Agent-Based Model for Crowd Simulation

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2022)

Abstract

In this paper, we propose an agent-based model for crowd simulation. It is made up of two types of agents that act differently: collaboratives, which share information about the paths and/or repair the ones that have been damaged, and defectors, who share no information, destroy some paths and/or nodes, and take advantage of the collaborative agents’ guidance. The aim of the model is to investigate how the agents who engage in these two activities affect one another and, ultimately, on the collective behavior of the crowd. For both kinds of agents, three evaluation metrics have been considered: (i) the number of agents that have reached the exit; (ii) paths’ costs; and (iii) exit times. According to the data analysis, the presence of defectors is essential in improving the agents’ performance. Indeed, when both collaborators and defectors are present in the crowd, more agents exit, and their average path costs and average exit times are lower than when only collaborative agents are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J., van der Wal, C.N., van Wissen, A.: Modelling collective decision making in groups and crowds: integrating social contagion and interacting emotions, beliefs and intentions. Auton. Agent. Multi-Agent Syst. 27(1), 52–84 (2013). https://doi.org/10.1007/s10458-012-9201-1

    Article  Google Scholar 

  2. Consoli, P., Collerà, A., Pavone, M.: Swarm intelligence heuristics for graph coloring problem. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1909–1916 (2013). https://doi.org/10.1109/CEC.2013.6557792

  3. Consoli, P., Pavone, M.: O-BEE-COL: optimal BEEs for COLoring graphs. In: Legrand, P., Corsini, M.-M., Hao, J.-K., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2013. LNCS, vol. 8752, pp. 243–255. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11683-9_19

    Chapter  Google Scholar 

  4. Crespi, C., Fargetta, G., Pavone, M., Scollo, R.A.: an agent-based model to investigate different behaviours in a crowd simulation. In: Mernik, M., Eftimov, T., Črepinšek, M. (eds.) BIOMA 2022. LNCS, vol. 13627, pp. 1–14. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21094-5_1

  5. Crespi, C., Fargetta, G., Pavone, M., Scollo, R.A.: How a different ant behavior affects on the performance of the whole colony. In: Di Gaspero, L., Festa, P., Nakib, A., Pavone, M. (eds.) MIC 2022. LNCS, vol. 13838, pp. 187–199. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26504-4_14

  6. Crespi, C., Fargetta, G., Pavone, M., Scollo, R.A., Scrimali, L.: A game theory approach for crowd evacuation modelling. In: Filipič, B., Minisci, E., Vasile, M. (eds.) BIOMA 2020. LNCS, vol. 12438, pp. 228–239. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63710-1_18

    Chapter  Google Scholar 

  7. Crespi, C., Scollo, R.A., Pavone, M.: Effects of different dynamics in an ant colony optimization algorithm. In: 2020 7th International Conference on Soft Computing Machine Intelligence (ISCMI 2020), pp. 8–11. IEEE (2020). https://doi.org/10.1109/ISCMI51676.2020.9311553

  8. DeAngelis, D.L., Diaz, S.G.: Decision-making in agent-based modeling: a current review and future prospectus. Front. Ecol. Evol. 6, 237 (2019). https://doi.org/10.3389/fevo.2018.00237

    Article  Google Scholar 

  9. Drury, J., et al.: Cooperation versus competition in a mass emergency evacuation: a new laboratory simulation and a new theoretical model. Behav. Res. Methods 41, 957–970 (2009). https://doi.org/10.3758/BRM.41.3.957

    Article  Google Scholar 

  10. Khamis, N., Selamat, H., Ismail, F.S., Lutfy, O.F., Haniff, M.F., Nordin, I.N.A.M.: Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization. Chaos Solitons Fractals 131, 109505 (2020). https://doi.org/10.1016/j.chaos.2019.109505

  11. Peng, Y., Li, S.W., Hu, Z.Z.: A self-learning dynamic path planning method for evacuation in large public buildings based on neural networks. Neurocomputing 365, 71–85 (2019). https://doi.org/10.1016/j.neucom.2019.06.099

    Article  Google Scholar 

  12. Pintea, C.-M., Matei, O., Ramadan, R.A., Pavone, M., Niazi, M., Azar, A.T.: A fuzzy approach of sensitivity for multiple colonies on ant colony optimization. In: Balas, V.E., Jain, L.C., Balas, M.M. (eds.) SOFA 2016. AISC, vol. 634, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62524-9_8

    Chapter  Google Scholar 

  13. Shi, X., Ye, Z., Shiwakoti, N., Tang, D., Lin, J.: Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck. Phys. A 522, 350–364 (2019). https://doi.org/10.1016/j.physa.2019.01.086

    Article  Google Scholar 

  14. Siyam, N., Alqaryouti, O., Abdallah, S.: Research issues in agent-based simulation for pedestrians evacuation. IEEE Access 8, 134435–134455 (2020). https://doi.org/10.1109/ACCESS.2019.2956880

    Article  Google Scholar 

  15. van der Wal, C.N., Formolo, D., Robinson, M.A., Minkov, M., Bosse, T.: Simulating crowd evacuation with socio-cultural, cognitive, and emotional elements. In: Mercik, J. (ed.) Transactions on Computational Collective Intelligence XXVII. LNCS, vol. 10480, pp. 139–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70647-4_11

    Chapter  Google Scholar 

  16. Varghese, E.B., Thampi, S.M.: Towards the cognitive and psychological perspectives of crowd behaviour: a vision-based analysis. Connect. Sci. 33(2), 380–405 (2021). https://doi.org/10.1080/09540091.2020.1772723

    Article  Google Scholar 

  17. Wang, S., Liu, H., Gao, K., Zhang, J.: A multi-species artificial bee colony algorithm and its application for crowd simulation. IEEE Access 7, 2549–2558 (2019). https://doi.org/10.1109/ACCESS.2018.2886629

    Article  Google Scholar 

  18. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/netlogo/

  19. Yücel, F., Sürer, E.: Implementation of a generic framework on crowd simulation: a new environment to model crowd behavior and design video games. Mugla J. Sci. Technol. 6, 69–78 (2020). https://doi.org/10.22531/muglajsci.706841

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pavone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crespi, C., Fargetta, G., Pavone, M., Scollo, R.A. (2023). An Agent-Based Model for Crowd Simulation. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31183-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31182-6

  • Online ISBN: 978-3-031-31183-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics