Skip to main content

Constraining Extended Scalar Sectors at Current and Future Colliders—An Update

  • Conference paper
  • First Online:
8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics (FPCP 2022)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 292))

Included in the following conference series:

Abstract

In this proceeding, I discuss several models that extend the scalar sector of the Standard Model by additional matter states. I here focus on results for models with singlet extensions, which have been obtained recently and update some of the results presented in previous work. In more detail, I will briefly review the option to test a strong first-order electroweak phase transition using precision measurements in the electroweak sector, as well as production cross-sections for non-standard scalar production at Higgs factories.

RBI-ThPhys-2022-36.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I thank D. Azevedo for providing exclusion limits for \(b\,\bar{b}\tau ^+\tau ^-\) [27] in a digitized format, as used in [28].

  2. 2.

    We include searches currently available via HiggsBounds.

  3. 3.

    This corresponds to the PDG value at the time of the above reference. The current value [39] is slightly lower. We do not expect this to have a qualitatively large impact.

  4. 4.

    At the order of perturbation theory discussed here; extending to higher orders might introduce additional parameter dependencies.

  5. 5.

    Note that the Run 2 combinations of ATLAS [41] and CMS [42] separately lead to \(|\sin \theta |\,\lesssim \,0.26\) and \(|\sin \theta |\,\lesssim \,0.33\), respectively.

  6. 6.

    The parameter scans include only current bounds, not possible discovery or exclusion at e.g. a HL-LHC.

References

  1. T. Robens, PoS CORFU2021, 031 (2022)

    Google Scholar 

  2. G.M. Pruna, T. Robens, Phys. Rev. D88, 115012 (2013), 1303.1150

    Google Scholar 

  3. T. Robens, T. Stefaniak, Eur. Phys. J. C75, 104 (2015), 1501.02234

    Google Scholar 

  4. T. Robens, T. Stefaniak, Eur. Phys. J. C76, 268 (2016), 1601.07880

    Google Scholar 

  5. A. Ilnicka, T. Robens, T. Stefaniak, Mod. Phys. Lett. A 33, 1830007 (2018), 1803.03594

    Google Scholar 

  6. J. Alison et al., (2019), 1910.00012, [Rev. Phys.5,100045(2020)]

    Google Scholar 

  7. T. Robens, More doublets and singlets, in 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2022), 2205.06295

    Google Scholar 

  8. T. Robens, Di-Higgs production in BSM models, in 10th Large Hadron Collider Physics Conference (2022), 2209.06795

    Google Scholar 

  9. T. Robens, T. Stefaniak, J. Wittbrodt, Eur. Phys. J. C 80, 151 (2020), 1908.08554

    Google Scholar 

  10. T. Robens, Symmetry 15, 27 (2023) 2209.10996

    Google Scholar 

  11. G. Altarelli, R. Barbieri, Phys. Lett. B 253, 161 (1991)

    Article  ADS  Google Scholar 

  12. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  13. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    Article  ADS  Google Scholar 

  14. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138 (2010), 0811.4169

    Google Scholar 

  15. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605 (2011), 1102.1898

    Google Scholar 

  16. P. Bechtle et al., Eur. Phys. J. C 74, 2693 (2014), 1311.0055

    Google Scholar 

  17. P. Bechtle et al., Eur. Phys. J. C80, 1211 (2020), 2006.06007

    Google Scholar 

  18. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, Eur. Phys. J. C 74, 2711 (2014), 1305.1933

    Google Scholar 

  19. P. Bechtle et al., Eur. Phys. J. C 81, 145 (2021), 2012.09197

    Google Scholar 

  20. Gfitter Group, M. Baak et al., Eur. Phys. J. C74, 3046 (2014), 1407.3792

    Google Scholar 

  21. J. Haller et al., Eur. Phys. J. C78, 675 (2018), 1803.01853

    Google Scholar 

  22. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP 06, 128 (2011), 1106.0522

    Google Scholar 

  23. LHC Higgs Cross Section Working Group, D. de Florian et al., (2016), 1610.07922

    Google Scholar 

  24. ATLAS, G. Aad et al., Phys. Lett. B800, 135103 (2020), 1906.02025

    Google Scholar 

  25. ATLAS, G. Aad et al., Phys. Rev. D 105, 092002 (2022), 2202.07288

    Google Scholar 

  26. ATLAS, G. Aad et al., (2021), Phys Rev D 106, 05200 (2022), 2112.11876

    Google Scholar 

  27. CERN Report No., (2021) (unpublished), ATLAS-CONF-2021-030

    Google Scholar 

  28. H. Abouabid et al., JHEP 09, 011 (2022), 2112.12515

    Google Scholar 

  29. CERN Report No., (2013) (unpublished), CMS-PAS-HIG-13-003

    Google Scholar 

  30. CMS, V. Khachatryan et al., JHEP 10, 144 (2015), 1504.00936

    Google Scholar 

  31. CMS, A.M. Sirunyan et al., JHEP 06, 127 (2018), 1804.01939, [Erratum: JHEP03,128(2019)]

    Google Scholar 

  32. ATLAS, M. Aaboud et al., Phys. Rev. D98, 052008 (2018), 1808.02380

    Google Scholar 

  33. CERN Report No., (2012) (unpublished), CMS-PAS-HIG-12-045

    Google Scholar 

  34. M. Carena et al., Probing the electroweak phase transition with exotic higgs decays, in 2022 Snowmass Summer Study (2022), 2203.08206

    Google Scholar 

  35. A. Papaefstathiou, G. White, JHEP 05, 099 (2021), 2010.00597

    Google Scholar 

  36. A. Papaefstathiou, G. White, JHEP 02, 185 (2022), 2108.11394

    Google Scholar 

  37. A. Papaefstathiou, T. Robens, G. White, Signal strength and W-boson mass measurements as a probe of the electro-weak phase transition at colliders—Snowmass White Paper, in 2022 Snowmass Summer Study (2022), 2205.14379

    Google Scholar 

  38. Particle Data Group, P.A. Zyla et al., PTEP 2020, 083C01 (2020)

    Google Scholar 

  39. Particle Data Group, R.L. Workman, PTEP 2022, 083C01 (2022)

    Google Scholar 

  40. CERN Report No., 2021 (unpublished), ATLAS-CONF-2021-053

    Google Scholar 

  41. ATLAS, Nature 607, 52 (2022), 2207.00092

    Google Scholar 

  42. CMS, Nature 607, 60 (2022), 2207.00043

    Google Scholar 

  43. C. Vernieri, Higgs & BSM contributions, Talk at Energy Frontier Workshop, https://indico.fnal.gov/event/52465/contributions/236210/attachments/153456/199133/Snowmass-EF01-2-Brown.pdf

  44. S. Dawson et al., Report of the topical group on higgs physics for snowmass 2021: the case for precision higgs physics, in 2022 Snowmass Summer Study, 2022, 2209.07510

    Google Scholar 

  45. D. López-Val and T. Robens, Phys. Rev. D 90, 114018 (2014), 1406.1043

    Google Scholar 

  46. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). (hep-ph/0311148)

    Article  ADS  Google Scholar 

  47. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 101, 014029 (2020), 1911.00367

    Google Scholar 

  48. T. Robens, TRSM Benchmark Planes—Snowmass White Paper, in 2022 Snowmass Summer Study (2022), 2205.14486

    Google Scholar 

  49. T. Robens, Universe 8, 286 (2022), 2205.09687

    Google Scholar 

  50. R. Coimbra, M.O.P. Sampaio, R. Santos, Eur. Phys. J. C 73, 2428 (2013), 1301.2599

    Google Scholar 

  51. M. Mühlleitner, M.O.P. Sampaio, R. Santos, J. Wittbrodt, Eur. Phys. J. C 82, 198 (2022), 2007.02985

    Google Scholar 

  52. P. Drechsel, G. Moortgat-Pick, G. Weiglein, Eur. Phys. J. C 80, 922 (2020), 1801.09662

    Google Scholar 

  53. Y. Wang, M. Berggren, J. List (2020), 2005.06265, ILD-PHYS-PUB-2019-011

    Google Scholar 

  54. T. Robens, A short overview on low mass scalars at future lepton colliders—Snowmass White Paper, in 2022 Snowmass Summer Study (2022), 2203.08210

    Google Scholar 

  55. CMS, Phys. Lett. B 842, 137392 (2023), 2204.12413

    Google Scholar 

  56. CERN Report No., 2022 (unpublished), CMS-PAS-HIG-21-011

    Google Scholar 

  57. T. Robens, \(b\bar{b}b\bar{b}\) final states in the TRSM for asymmetric production and decay. https://twiki.cern.ch/twiki/pub/LHCPhysics/LHCHWG3EX/rep.pdf

  58. T. Robens, trsm_bbgaga.txt, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG3EX

    Google Scholar 

  59. U. Ellwanger, C. Hugonie, Eur. Phys. J. C 82, 406 (2022), 2203.05049

    Google Scholar 

  60. CMS, A. Tumasyan et al., Phys. Lett. B 835, 137566 (2022), 2203.00480

    Google Scholar 

  61. ATLAS, G. Aad et al., Phys. Rev. D 105, 012006 (2022), 2110.00313

    Google Scholar 

Download references

Acknowledgements

I thank the organizers of the workshop for additional financial support, as well as A. Papaefstathiou and G. White for fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Robens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robens, T. (2023). Constraining Extended Scalar Sectors at Current and Future Colliders—An Update. In: Ricciardi, G., De Nardo, G., Merola, M. (eds) 8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics. FPCP 2022. Springer Proceedings in Physics, vol 292. Springer, Cham. https://doi.org/10.1007/978-3-031-30459-0_13

Download citation

Publish with us

Policies and ethics