Skip to main content

Comparison of Finite Difference Schemes of Different Orders of Accuracy for the Burgers Wave Equation Problem

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2022)

Abstract

A large number of problems in physics and technology lead to boundary value or initial boundary value problems for linear and nonlinear partial differential equations. Moreover, the number of problems that have an analytical solution is limited. These are problems in canonical domains such as, for example, a rectangle, circle, or ball, and usually for equations with constant coefficients. In practice, it is often necessary to solve problems in very complex areas and for equations with variable coefficients, often nonlinear. This leads to the need to look for approximate solutions using various numerical methods. A fairly effective method for the numerical solution of problems in mathematical physics is the finite difference method or the grid method, which makes it possible to reduce the approximate solution of partial differential equations to the solution of systems of algebraic equations. The article studied the most popular numerical methods of the first, second, third and fourth order of accuracy. All of these circuits have been compared with exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Кoвeня, B.M.: Paзнocтныe мeтoды peшeния мнoгoмepныx зaдaч (2004)

    Google Scholar 

  2. Кoвeня, B.M., Чиpкoв, Д.B.: Meтoды кoнeчныx paзнocтeй и кoнeчныx oбъeмoв для peшeния зaдaч мaтeмaтичecкoй физики. Hoвocибиpcк: Hoвocибиpcкий гocyдapcтвeнный yнивepcитeт, pp. 7–8 (2013)

    Google Scholar 

  3. Aндepcoн, Д., Taннexилл, Д., Плeтчep, P.: Bычиcлитeльнaя гидpoмexaникa и тeплooбмeн: B 2-x т.: Пep. c aнгл. Mиp (1990)

    Google Scholar 

  4. Warming, R.F., Hyett, B.J.: The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14(2), 159–179 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  6. Thomas, L.H.: Elliptic problems in linear difference equations over a network. Watson Sci. Comput. Lab. Rept. Columbia Univ. New York 1, 71 (1949)

    Google Scholar 

  7. Madaliev, E., Madaliev, M., Adilov, K., Pulatov, T.: Comparison of turbulence models for two-phase flow in a centrifugal separator. In: E3S Web of Conferences 2021, vol. 264, p. 1009 (2021)

    Google Scholar 

  8. Mirzoev, A.A., Madaliev, M., Sultanbayevich, D.Y.: Numerical modeling of non-stationary turbulent flow with double barrier based on two liquid turbulence model. In: 2020 International Conference on Information Science and Communications Technologies (ICISCT), pp. 1–7 (2020)

    Google Scholar 

  9. Abdulkhaev, Z.E., Abdurazaqov, A.M., Sattorov, A.M.: Calculation of the transition processes in the pressurized water pipes at the start of the pump unit. JournalNX 7(05), 285–291 (2021). https://doi.org/10.17605/OSF.IO/9USPT

  10. Lax, P.: Systems of conservation laws. Los Alamos National Lab NM (1959)

    Google Scholar 

  11. MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. J. Spacecr. Rockets 40(5), 757–763 (2003)

    Article  Google Scholar 

  12. Warming, R.F., Kutler, P., Lomax, H.: Second-and third-order noncentered difference schemes for nonlinear hyperbolic equations. AIAA J. 11(2), 189–196 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Abarbanel, S., Gottlieb, D., Turkelm, E.: Difference schemes with fourth order accuracy for hyperbolic equations. SIAM J. Appl. Math. 29, 329–351 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Malikov, Z.M., Madaliev, M.E.: Numerical simulation of two-phase flow in a centrifugal separator. Fluid. Dyn. 55, 1012–1028 (2020). https://doi.org/10.1134/S0015462820080066

  15. Nazarov, F.K., Malikov, Z.M., Rakhmanov, N.M.: Simulation and numerical study of two-phase flow in a centrifugal dust catcher. J. Phys. Conf. Ser. 1441(1), 12155 (2020)

    Article  Google Scholar 

  16. Malikov, Z.M., Madaliev, M.E.: New two-fluid turbulence model-based numerical simulation of flow in a flat suddenly expanding channel. Her. Bauman Mosc. State Tech. Univ. Ser. Nat. Sci. 4(97), 24–39 (2021). (In Russian). https://doi.org/10.18698/1812-3368-2021-4-24-39

  17. Abdukarimov, B., O’tbosarov, S., Abdurazakov, A.: Investigation of the use of new solar air heaters for drying agricultural products. In: E3S Web of Conferences, vol. 264, p. 1031 (2021)

    Google Scholar 

  18. Erkinjonson, M.M.: Numerical calculation of an air centrifugal separator based on the SARC turbulence model. J. Appl. Comput. Mech. 7(2) (2021). https://doi.org/10.22055/JACM.2020.31423.1871

  19. Hamdamov, M.M., Mirzoyev, A.A., Buriev, E.S., Tashpulatov, N.: Simulation of non-isothermal free turbulent gas jets in the process of energy exchange. In: E3S Web of Conferences, vol. 264, p. 01017 (2021)

    Google Scholar 

  20. Fayziev, R.A., Hamdamov, M.M.: Model and program of the effect of incomplete combustion gas on the economy. In: ACM International Conference Proceeding Series, pp. 401–406 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabim Alikulovich Fayziev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madaliev, M.E.U., Fayziev, R.A., Buriev, E.S., Mirzoev, A.A. (2023). Comparison of Finite Difference Schemes of Different Orders of Accuracy for the Burgers Wave Equation Problem. In: Koucheryavy, Y., Aziz, A. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2022. Lecture Notes in Computer Science, vol 13772. Springer, Cham. https://doi.org/10.1007/978-3-031-30258-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30258-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30257-2

  • Online ISBN: 978-3-031-30258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics