Skip to main content

Numerical Modeling of Vertical Axis Wind Turbines Using ANSYS Fluent Software

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2022)

Abstract

The main objective of this study is to perform numerical simulations to test the performance of a vertical axis wind turbine in the low wind speed state of the east coast of Uzbekistan as indicated elsewhere with an average annual wind at a cut-off wind speed of 5 m/s. The aim is to develop wind energy technologies that can maximize the power extracted from the turbine in low wind conditions and to accelerate the penetration of wind energy technologies in Uzbekistan. The main problem of mathematical modeling of vertical axis wind turbines within the framework of the ANSYS Fluent software package is the choice of a turbulence model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, I., Von Doenhoff, A., Stivers, L.: Report no. 824 summary of airfoil data. Langley Field (1945). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930090976.pdf

  2. Abe, K.I., Ohya, Y.: An investigation of flow fields around flanged diffusers using CFD. J. Wind Eng. Ind. Aerodyn. 92(3–4), 315–330 (2004). https://doi.org/10.1016/j.jweia.2003.12.003

    Article  Google Scholar 

  3. World Wind Energy Association (WWEA). World Wind Energy Report 2009. http://www.wwindea.org

  4. World Energy Outlook 2009. http://www.iea.org

  5. Alam, F., Golde, S.: An aerodynamic study of a micro scale vertical axis wind turbine. Proc. Eng. 56, 568–572 (2013). https://doi.org/10.1016/j.proeng.2013.03.161

    Article  Google Scholar 

  6. Ali, A., Alam, F., Djamovski, V., Watkins, S.: A review of power generation from wind in Australia. In: Proceedings of the 9th International Conference of Mechanical Engineering (ICME2011). ANSYS Inc. (2011). ANSYS-FLUENT Theory Guide, 15317(November), 724–746

    Google Scholar 

  7. Aranake, A.C., Lakshminarayan, V.K., Duraisamy, K.: Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver. Renew. Energy 75, 818–832 (2015). https://doi.org/10.1016/j.renene.2014.10.049

    Article  Google Scholar 

  8. Balduzzi, F., Bianchini, A., Carnevale, E.A., Ferrari, L., Magnani, S.: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 97, 921–929 (2012). https://doi.org/10.1016/j.apenergy.2011.12.008

    Article  Google Scholar 

  9. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting (1989). https://doi.org/10.2514/6.1989-366

  10. Bazilevs, Y., et al.: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int. J. Numer. Methods Fluids 65(1–3), 207–235 (2011). https://doi.org/10.1002/fld.2400

  11. Bet, F., Grassmann, H.: Upgrading conventional wind turbines. Renew. Energy 28(1), 71–78 (2003). https://doi.org/10.1016/S0960-1481(01)00187-2

    Article  Google Scholar 

  12. Chen, J., Yang, H., Yang, M., Xu, H., Hu, Z.: A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine. Renew. Sustain. Energy Rev. 51, 1709–1720 (2015). https://doi.org/10.1016/j.rser.2015.07.065

    Article  Google Scholar 

  13. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Revised Second Edition (2007)

    Google Scholar 

  14. Global Wind Energy Council: Global Wind Statistics 2017. Brussels(2018). http://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf

  15. Hansen, M., et al.: A global Navier-Stokes rotor prediction model. In: 35th Aerospace Sciences Meeting and Exhibit (1997). https://doi.org/10.2514/6.1997-970

  16. Hsiao, F.-B., Bai, C.-J., Chong, W.-T.: The performance test of three different horizontal axis wind turbine (HAWT) blade shapes using experimental and numerical methods. Energies 6(6), 2784–2803 (2013). https://doi.org/10.3390/en6062784

    Article  Google Scholar 

  17. Grauers, A.: Efficiency of three wind energy generator systems. IEEE Trans. Energy Convers. 11(3), 650–655 (1996). https://doi.org/10.1109/60.537038

    Article  Google Scholar 

  18. Gaden, D.L.F., Bibeau, E.L.: A numerical investigation into the effect of diffusers on 114 the performance of hydro kinetic turbines using a validated momentum source turbine model. Renew. Energy 35(6), 1152–1158 (2010). https://doi.org/10.1016/j.renene.2009.11.023

    Article  Google Scholar 

  19. Igra, O.: Research and development for shrouded wind turbines. Energy Convers. Manage. 21(1), 13–48 (1981). https://doi.org/10.1016/0196-8904(81)90005-4

    Article  Google Scholar 

  20. Ilk, R.: High-speed aerodynamic characteristics of four thin naca 63-series airfoils. Moffett Field. Innovations | Offshore Wind Turbines | MHI VestasTM (1947). http://www.mhivestasoffshore.com/innovations/. Accessed 5 Mar 2018

  21. Hamdamov, M., Khujaev, I., Bazarov, O., Isabaev, K.: Axisymmetric turbulent methane jet propagation in a wake air flow under combustion at a finite velocity. In: IOP Conference Series: Materials Science and Engineering this Link is Disabled, vol. 1030, no. 1, p. 012163 (2021)

    Google Scholar 

  22. Hamdamov, M., Mirzoyev, A., Buriev, E., Tashpulatov, N.: Simulation of non-isothermal free turbulent gas jets in the process of energy exchange. In: E3S Web of Conferences, vol. 264, p. 01017 (2021)

    Google Scholar 

  23. Fayziev, R.A., Hamdamov, M.M. Model and program of the effect of incomplete combustion gas on the economy. In: ACM International Conference Proceeding Series, pp. 401–406 (2021)

    Google Scholar 

  24. Khujaev, I.K., Hamdamov, M.M.: Axisymmetric turbulent methane jet propagation in a co-current air flow under combustion at a finite velocity. Herald of the Bauman Moscow State Technical University, Series Natural Sciencesthis link is Disabled, no. 5, pp. 89–108 (2021)

    Google Scholar 

  25. SHadimetov, Kh.M., Akhmedov, D.M.: Approximate solution of a singular integral equation using the Sobolev method. J. Lobachevsky Math. 43(2) pp 496–505 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffar Muhiddinovich Hamdamov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamdamov, M.M., Ishnazarov, A.I., Mamadaliev, K.A. (2023). Numerical Modeling of Vertical Axis Wind Turbines Using ANSYS Fluent Software. In: Koucheryavy, Y., Aziz, A. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2022. Lecture Notes in Computer Science, vol 13772. Springer, Cham. https://doi.org/10.1007/978-3-031-30258-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30258-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30257-2

  • Online ISBN: 978-3-031-30258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics