Skip to main content

The Cost of Randomness in Evolutionary Algorithms: Crossover can Save Random Bits

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13987))

  • 298 Accesses

Abstract

Evolutionary algorithms make countless random decisions during selection, mutation and crossover operations. These random decisions require a steady stream of random numbers.

We analyze the expected number of random bits used throughout a run of an evolutionary algorithm and refer to this as the cost of randomness. We give general bounds on the cost of randomness for mutation-based evolutionary algorithms using 1-bit flips or standard mutations using either a naive or a common, more efficient implementation that uses \(\varTheta (\log n)\) random bits per mutation.

Uniform crossover is a potentially wasteful operator as the number of random bits used equals the Hamming distance of the two parents, which can be up to n. However, we show for a (2+1) Genetic Algorithm that is known to optimize the test function OneMax in roughly \((e/2)n \ln n\) expected evaluations, twice as fast as the fastest mutation-based evolutionary algorithms, that the total cost of randomness during all crossover operations on OneMax is only \(\varTheta (n)\). Consequently, the use of crossover can reduce the cost of randomness below that of the fastest evolutionary algorithms that only use standard mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the term “genetic algorithm” (GA) for EAs that use crossover.

References

  1. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_1

    Chapter  Google Scholar 

  2. Bringmann, K., Friedrich, T.: Exact and efficient generation of geometric random variates and random graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 267–278. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_23

    Chapter  MATH  Google Scholar 

  3. Corus, D., Lissovoi, A., Oliveto, P.S., Witt, C.: On steady-state evolutionary algorithms and selective pressure: why inverse rank-based allocation of reproductive trials is best. ACM Trans. Evol. Learn. Optim. 1(1), 2:1-2:38 (2021)

    Article  Google Scholar 

  4. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hill climb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput. 22(5), 720–732 (2018)

    Article  Google Scholar 

  5. Corus, D., Oliveto, P.S.: On the benefits of populations for the exploitation speed of standard steady-state genetic algorithms. Algorithmica 82(12), 3676–3706 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corus, D., Oliveto, P.S., Yazdani, D.: Fast immune system-inspired hypermutation operators for combinatorial optimization. IEEE Trans. Evol. Comput. 25(5), 956–970 (2021)

    Article  MATH  Google Scholar 

  7. Dang, D.-C., et al.: Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput. 22(3), 484–497 (2018)

    Article  Google Scholar 

  8. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr and Neumann [13], pp. 1–87

    Google Scholar 

  9. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 2083–2090. ACM Press (2011)

    Google Scholar 

  11. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+\(\lambda \)) evolutionary algorithm with self-adjusting mutation rate. Algorithmica 81(2), 593–631 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doerr, B., Phuoc Le, H., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 777–784. ACM (2017)

    Google Scholar 

  13. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation - Recent Developments in Discrete Optimization. Natural Computing Series, Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4

    Book  MATH  Google Scholar 

  14. Doerr, B., Neumann, F.: A survey on recent progress in the theory of evolutionary algorithms for discrete optimization. ACM Trans. Evol. Learn. Optim. 1(4), 1–43 (2021)

    Article  Google Scholar 

  15. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn. Springer, Cham (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  MATH  Google Scholar 

  16. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York (1971)

    MATH  Google Scholar 

  17. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The benefit of recombination in noisy evolutionary search. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 140–150. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_13

    Chapter  Google Scholar 

  18. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. Algorithmica 75(3), 462–489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grefenstette, J.: Efficient implementation of algorithms. In: Handbook of Evolutionary Computation, pp. E2.1:1–E2.1:6. IOP Publishing Ltd., 1st edn. (1997)

    Google Scholar 

  20. Thomas Jansen. Analyzing Evolutionary Algorithms - The Computer Science Perspective. Springer, 2013

    Google Scholar 

  21. Jansen, T., Zarges, C.: Analysis of evolutionary algorithms: from computational complexity analysis to algorithm engineering. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA 2011), pp. 1–14. ACM (2011)

    Google Scholar 

  22. Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic contiguous hypermutations. Theoret. Comput. Sci. 412(6), 517–533 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lässig, J., Sudholt, D.: General upper bounds on the running time of parallel evolutionary algorithms. Evol. Comput. 22(3), 405–437 (2014)

    Article  MATH  Google Scholar 

  24. Mambrini, A., Sudholt, D.: Design and analysis of schemes for adapting migration intervals in parallel evolutionary algorithms. Evol. Comput. 23(4), 559–582 (2015)

    Article  Google Scholar 

  25. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  26. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization - Algorithms and Their Computational Complexity. NCS, 1st edn. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-16544-3

    Book  MATH  Google Scholar 

  27. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms outperform evolutionary algorithms in multimodal optimisation. Artif. Intell. 287, 103345 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliveto, P.S., Sudholt, D., Witt, C.: Tight bounds on the expected runtime of a standard steady state genetic algorithm. Algorithmica 84(6), 1603–1658 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qian, C., Bian, C., Yang, Yu., Tang, K., Yao, X.: Analysis of noisy evolutionary optimization when sampling fails. Algorithmica 83(4), 940–975 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Route, M.: Radio-flaring ultracool dwarf population synthesis. Astrophys. J. 845(1), 66 (2017)

    Article  Google Scholar 

  31. Rudolph, G., Ziegenhirt, J.: Computation time of evolutionary operators. In: Handbook of Evolutionary Computation, pp. E2.2:1–E2.2:4. IOP Publishing Ltd. 1st edn. (1997)

    Google Scholar 

  32. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2013)

    Article  Google Scholar 

  33. Sudholt, D.: How crossover speeds up building-block assembly in genetic algorithms. Evol. Comput. 25(2), 237–274 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors thank participants of Dagstuhl seminar 22081 “Theory of Randomized Optimization Heuristics” for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Sudholt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kneissl, C., Sudholt, D. (2023). The Cost of Randomness in Evolutionary Algorithms: Crossover can Save Random Bits. In: Pérez Cáceres, L., Stützle, T. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2023. Lecture Notes in Computer Science, vol 13987. Springer, Cham. https://doi.org/10.1007/978-3-031-30035-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30035-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30034-9

  • Online ISBN: 978-3-031-30035-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics