Skip to main content

Gaze Detection Using Encoded Retinomorphic Events

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2022)

Abstract

Event-based gaze detection is a modern problem having several applications and advantages over frame-based techniques. Retinomorphic Event data is logged at a time resolution of microseconds that makes them suitable for the detection of saccadic eye movements. We recorded a new and compact event-based dataset for gaze detection under varying conditions of illumination using a DVS camera. The recorded dataset involved subjects tracking a circle displayed on a screen within a very short duration of time. We propose a novel event encoding technique for encoding event logs resulting from saccadic motion into six channel images. We design a Convolutional Neural Network for the gaze prediction using the encoded events obtained from the retinomorphic sensor. We use multiple evaluation metrics like average distance, average angle, and pixel radius accuracy to validate the reliability of our approach. The recorded dataset will be made available as per request.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rayner, K., Castelhano, M.: Eye movements. Scholarpedia 2(10), 3649 (2007)

    Article  Google Scholar 

  2. Findlay, J., Walker, R.: Human saccadic eye movements. Scholarpedia 7(7), 5095 (2012)

    Article  Google Scholar 

  3. Cheng, W., Luo, H., Yang, W., Yu, L., Chen, S., Li, W.: Det: a high-resolution dvs dataset for lane extraction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  4. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2020)

    Article  Google Scholar 

  5. Dynamic vision sensor (2022). https://inivation.com/products/customsolutions/videos/ Accessed 13 Apr 2022

  6. Baby, S.A., Vinod, B., Chinni, C., Mitra, K.: Dynamic vision sensors for human activity recognition. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 316–321. IEEE (2017)

    Google Scholar 

  7. Wan, J., et al.: Event-based pedestrian detection using dynamic vision sensors. Electronics 10(8), 888 (2021)

    Article  Google Scholar 

  8. Liao, F., Zhou, F., Chai, Y.: Neuromorphic vision sensors: principle, progress and perspectives. J. Semicond. 42(1), 013105 (2021)

    Article  Google Scholar 

  9. Köles, M.: A review of pupillometry for human-computer interaction studies. Periodica Polytechnica Electr. Eng. Comput. Sci. 61(4), 320–326 (2017)

    Article  Google Scholar 

  10. Lukander, K.: A short review and primer on eye tracking in human computer interaction applications (2016)

    Google Scholar 

  11. Corcoran, P.M., Nanu, F., Petrescu, S., Bigioi, P.: Real-time eye gaze tracking for gaming design and consumer electronics systems. IEEE Trans. Cons. Electron. 58(2), 347–355 (2012)

    Article  Google Scholar 

  12. Brunyé, T.T., Drew, T., Weaver, D.L., Elmore, J.G.: A review of eye tracking for understanding and improving diagnostic interpretation. Cogn. Res.: Principles Impl. 4 (2019)

    Google Scholar 

  13. Young, L.R., Sheena, D.: Survey of eye movement recording methods. Behav. Res. Methods Instr. 7, 397–429 (1975)

    Article  Google Scholar 

  14. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in the wild. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4511–4520 (2015)

    Google Scholar 

  15. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Mpiigaze: real-world dataset and deep appearance-based gaze estimation. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 162–175 (2019)

    Article  Google Scholar 

  16. Cornsweet, T.N., Crane, H.D.: Accurate two-dimensional eye tracker using first and fourth purkinje images. J. Opt. Soc. Am. 63(8), 921–928 (1973)

    Article  Google Scholar 

  17. Crane, H.D., Steele, C.M.: Generation-v dual-purkinje-image eyetracker. Appl. Opt. 24(4), 527–537 (1985)

    Article  Google Scholar 

  18. Li, Y., Wang, S., Ding, X.: Eye/eyes tracking based on a unified deformable template and particle filtering. Pattern Recogn. Lett. 31(11), 1377–1387 (2010)

    Article  Google Scholar 

  19. Wang, K., Ji, Q.: Real time eye gaze tracking with 3D deformable eye-face model. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1003–1011 (2017)

    Google Scholar 

  20. Topal, C., Gerek, Ö.N., Doğan, A.: A head-mounted sensor-based eye tracking device: eye touch system. In: ETRA 2008 (2008)

    Google Scholar 

  21. AkÅŸit, K., Kautz, J., Luebke, D.: Gaze-sensing leds for head mounted displays (2020)

    Google Scholar 

  22. Vogel, U., et al.: Bidirectional oled microdisplay for interactive see-through hmds: study toward integration of eye-tracking and informational facilities. J. Soc. Inf. Disp. 17, 03 (2009)

    Article  Google Scholar 

  23. Angelopoulos, A.N., Martel, J.N.P., Kohli, A.P., Conradt, J., Wetzstein, G.: Event-based near-eye gaze tracking beyond 10,000 hz. IEEE Trans. Vis. Comput. Graph. 27(5), 2577–2586 (2021)

    Article  Google Scholar 

  24. Stoffregen, T., Daraei, H., Robinson, C., Fix, A.: Event-based kilohertz eye tracking using coded differential lighting. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3937–3945 (2022)

    Google Scholar 

  25. Mueggler, E., Forster, C., Baumli, N., Gallego, G., Scaramuzza, D.: Lifetime estimation of events from dynamic vision sensors. In: 2015 IEEE international conference on Robotics and Automation (ICRA), pp. 4874–4881. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

All computations were performed using the GPU resources provided by the AI Computing Facility, CSIR-CEERI. The authors sincerely appreciate the willingness of the contributing subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, A., Prasad, S.S., Mehta, N.K., Kumar, H., Saurav, S., Singh, S. (2023). Gaze Detection Using Encoded Retinomorphic Events. In: Zaynidinov, H., Singh, M., Tiwary, U.S., Singh, D. (eds) Intelligent Human Computer Interaction. IHCI 2022. Lecture Notes in Computer Science, vol 13741. Springer, Cham. https://doi.org/10.1007/978-3-031-27199-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27199-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27198-4

  • Online ISBN: 978-3-031-27199-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics