Skip to main content

Artificial Intelligence Applications for Traumatic Brain Injury Research and Clinical Management

  • Chapter
  • First Online:
Neurobiological and Psychological Aspects of Brain Recovery

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 411 Accesses

Abstract

Artificial Intelligence (AI) is changing the world’s technology in the twenty-first century, impacting both scientific research and clinical practice. AI can help us better understand pathological states by addressing the challenges posed by complex data. Traumatic Brain Injury (TBI) is characterized by a strong heterogeneity, and AI can manage it and impact patient care by aiding decision-making. What will the patient’s outcome be? Is he at risk of death? Can AI enable time-saving procedures, increasing the chance of a positive clinical outcome? AI’s role in TBI research is to determine the most critical hallmarks for assessing recovery, to characterize homogeneous subgroups, and to guide advanced therapeutics tools. Here we describe how AI can address these crucial tasks and improve clinical strategies for TBI patients. The application of such findings will revolutionize diagnosis and treatments, enhancing health and life quality for people in need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bedry T, Tadele H. Pattern and outcome of pediatric traumatic brain injury at Hawassa University Comprehensive Specialized Hospital, Southern Ethiopia: observational cross-sectional study. Emergency Medicine International; 2020. p. 2020.

    Google Scholar 

  • Bennis FC, Teeuwen B, Zeiler FA, Elting JW, van der Naalt J, Bonizzi P, Delhaas T, Aries MJ. Improving prediction of favourable outcome after 6 months in patients with severe traumatic brain injury using physiological cerebral parameters in a Multivariable Logistic Regression Model. Neurocrit Care. 2020;33(2):542–51. https://doi.org/10.1007/s12028-020-00930-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao C, Tutwiler RL, Slobounov S. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. IEEE Trans Neural Syst Rehabil Eng. 2008;16(4):327–35. https://doi.org/10.1109/TNSRE.2008.918422.

    Article  PubMed  Google Scholar 

  • Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96.

    Article  PubMed  Google Scholar 

  • Conley AC, Cooper PS, Karayanidis F, Gardner AJ, Levi CR, Stanwell P, Gaetz MB, Iverson GL. Resting state electroencephalography and sports-related concussion: a systematic review. J Neurotrauma. 2019;36(1):1–13. https://doi.org/10.1089/neu.2018.5761.

    Article  Google Scholar 

  • Covington NV, Duff MC. Heterogeneity is a Hallmark of traumatic brain injury, not a limitation: a new perspective on study design in rehabilitation research. Am J Speech Lang Pathol. 2021;30(2S):974–85. https://doi.org/10.1044/2020_AJSLP-20-00081.

    Article  PubMed  Google Scholar 

  • Fabrizio C, Termine A, Caltagirone C, Sancesario G. Artificial intelligence for Alzheimer’s disease: promise or challenge? Diagnostics. 2021;11(8):1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorchak G, Rangnekar A, Onks C, Loeffert AC, Loeffert J, Olympia RP, DeVita S, Leddy J, Haider MN, Roberts A, Rieger J, Uhlig T, Monteith C, Middleton F, Zuckerman SL, Lee T, Yeates KO, Mannix R, Hicks S. Saliva RNA biomarkers predict concussion duration and detect symptom recovery: a comparison with balance and cognitive testing. J Neurol. 2021; https://doi.org/10.1007/s00415-021-10566-x.

  • Folweiler KA, Sandsmark DK, Diaz-Arrastia R, Cohen AS, Masino AJ. Unsupervised machine learning reveals novel traumatic brain injury patient phenotypes with distinct acute injury profiles and long-term outcomes. J Neurotrauma. 2020;37(12):1431–44. https://doi.org/10.1089/neu.2019.6705.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fong J, Ocampo R, Gross DP, Tavakoli M. Intelligent robotics incorporating machine learning algorithms for improving functional capacity evaluation and occupational rehabilitation. J Occup Rehabil. 2020;30(3):362–70. https://doi.org/10.1007/s10926-020-09888-w.

    Article  PubMed  Google Scholar 

  • Fong J, Rouhani H, Tavakoli M. A therapist-taught robotic system for assistance during gait therapy targeting foot drop. IEEE Robot Automat Lett. 2019;4(2):407–13.

    Article  Google Scholar 

  • Fong J, Tavakoli M. Kinesthetic teaching of a therapist’s behavior to a rehabilitation robot. 2018 international symposium on medical robotics (ISMR), 1–6, 2018.

    Google Scholar 

  • Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016.

    Google Scholar 

  • Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang G-Z. XAI-Explainable artificial intelligence. Sci Robot. 2019;4(37):eaay7120. https://doi.org/10.1126/scirobotics.aay7120.

    Article  PubMed  Google Scholar 

  • Hack D, Huff JS, Curley K, Naunheim R, Ghosh Dastidar S, Prichep LS. Increased prognostic accuracy of TBI when a brain electrical activity biomarker is added to loss of consciousness (LOC). Am J Emerg Med. 2017;35(7):949–52. https://doi.org/10.1016/j.ajem.2017.01.060.

    Article  PubMed  Google Scholar 

  • Hasler RM, Rauer T, Pape H-C, Zwahlen M. Inter-hospital transfer of polytrauma and severe traumatic brain injury patients: retrospective nationwide cohort study using data from the Swiss Trauma Register. PLoS One. 2021;16(6):e0253504. https://doi.org/10.1371/journal.pone.0253504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley CA, Ward AB, Magnay AR, Long J. Outcomes following childhood head injury: a population study. J Neurol Neurosurg Psychiatry. 2004;75(5):737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin MC, Kakusa B, Ku S, Vaca SD, Xu LW, Nalwanga J, Kiryabwire J, Ssenyonjo H, Mukasa J, Muhumuza M, Fuller AT, Haglund MM, Grant GA. Long-term follow-up of neurosurgical outcomes for adult patients in Uganda with traumatic brain injury. J Neurosurg. 2020;1–11 https://doi.org/10.3171/2020.4.JNS193092.

  • Kutcher JS, Giza CC. Sideline assessment of sports concussion: the lure of simplicity. AAN Enterprises; 2011.

    Google Scholar 

  • Lee S-B, Kim H, Kim Y-T, Zeiler FA, Smielewski P, Czosnyka M, Kim D-J. Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury. J Neurosurg. 2019;132(6):1952–60. https://doi.org/10.3171/2019.2.JNS182260.

    Article  PubMed  Google Scholar 

  • Leng Y, Byers AL, Barnes DE, Peltz CB, Li Y, Yaffe K. Traumatic brain injury and incidence risk of sleep disorders in nearly 200,000 US veterans. Neurology. 2021;96(13):e1792–9. https://doi.org/10.1212/WNL.0000000000011656.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H-Y, Li T-C, Tu Y-K, Tsai J-C, Lai H-S, Kuo L-T. Predicting long-term outcome after traumatic brain injury using repeated measurements of Glasgow Coma Scale and data mining methods. J Med Syst. 2015;39(2):14. https://doi.org/10.1007/s10916-014-0187-x.

    Article  PubMed  Google Scholar 

  • Luan L, Robinson JT, Aazhang B, Chi T, Yang K, Li X, Rathore H, Singer A, Yellapantula S, Fan Y, Yu Z, Xie C. Recent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalability. Neuron. 2020;108(2):302–21. https://doi.org/10.1016/j.neuron.2020.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucca LF, Lofaro D, Leto E, Ursino M, Rogano S, Pileggi A, Vulcano S, Conforti D, Tonin P, Cerasa A. The impact of medical complications in predicting the rehabilitation outcome of patients with disorders of consciousness after severe traumatic brain injury. Front Hum Neurosci. 2020;14:406. https://doi.org/10.3389/fnhum.2020.570544.

    Article  Google Scholar 

  • Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, Kohmura E. Machine learning to predict in-hospital morbidity and mortality after traumatic brain injury. J Neurotrauma. 2020;37(1):202–10. https://doi.org/10.1089/neu.2018.6276.

    Article  PubMed  Google Scholar 

  • Nizamis K, Athanasiou A, Almpani S, Dimitrousis C, Astaras A. Converging robotic technologies in targeted neural rehabilitation: a review of emerging solutions and challenges. Sensors. 2021;21(6):2084. https://doi.org/10.3390/s21062084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourahmad S, Hafizi-Rastani I, Khalili H, Paydar S. Identifying important attributes for prognostic prediction in traumatic brain injury patients. A hybrid method of decision tree and neural network. Methods Inf Med. 2016;55(5):440–9. https://doi.org/10.3414/ME15-01-0080.

    Article  PubMed  Google Scholar 

  • Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, Konttila T, Korja M. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019;9(1):17672. https://doi.org/10.1038/s41598-019-53889-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rau C-S, Kuo P-J, Chien P-C, Huang C-Y, Hsieh H-Y, Hsieh C-H. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One. 2018;13(11):e0207192. https://doi.org/10.1371/journal.pone.0207192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resquín F, Gonzalez-Vargas J, Ibáñez J, Brunetti F, Dimbwadyo I, Carrasco L, Alves S, Gonzalez-Alted C, Gomez-Blanco A, Pons JL. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study. J Neuroeng Rehabil. 2017;14:104. https://doi.org/10.1186/s12984-017-0312-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Savitsky B, Givon A, Rozenfeld M, Radomislensky I, Peleg K. Traumatic brain injury: it is all about definition. Brain Inj. 2016;30(10):1194–200.

    Article  CAS  PubMed  Google Scholar 

  • Schmid W, Fan Y, Chi T, Golanov E, Regnier-Golanov AS, Austerman RJ, Podell K, Cherukuri P, Bentley T, Steele CT, Schodrof S, Aazhang B, Britz GW. Review of wearable technologies and machine learning methodologies for systematic detection of mild traumatic brain injuries. J Neural Eng. 2021;18(4):041006. https://doi.org/10.1088/1741-2552/ac1982.

    Article  Google Scholar 

  • Schwab K. The fourth industrial revolution. Currency; 2017.

    Google Scholar 

  • Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–9.

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Wilde EA, Taylor BA, Tate DF, Levin H, Bigler ED, Scheibel RS, Newsome MR, Mayer AR, Abildskov T, Black GM, Lennon MJ, York GE, Agarwal R, DeVillasante J, Ritter JL, Walker PB, Ahlers ST, Tustison NJ. Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury. Brain Inj. 2016;30(12):1458–68. https://doi.org/10.1080/02699052.2016.1222080.

    Article  PubMed  Google Scholar 

  • Stopa BM, Tahir Z, Mezzalira E, Boaro A, Khawaja A, Grashow R, Zafonte RD, Smith TR, Gormley WB, Izzy S. The impact of age and severity on Dementia after traumatic brain injury: a comparison study. Neurosurgery. 2021;nyab297 https://doi.org/10.1093/neuros/nyab297.

  • Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet. 1974;304(7872):81–4.

    Article  Google Scholar 

  • Termine A, Fabrizio C, Strafella C, Caputo V, Petrosini L, Caltagirone C, Giardina E, Cascella R. Multi-layer picture of neurodegenerative diseases: lessons from the use of Big Data through artificial intelligence. J Personal Med. 2021;11(4):280.

    Article  Google Scholar 

  • Tunthanathip T, Oearsakul T. Application of machine learning to predict the outcome of pediatric traumatic brain injury. Chin J Traumatol. 2021; https://doi.org/10.1016/j.cjtee.2021.06.003.

  • Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, Oh J, Horgan D, Kroiss M, Danihelka I, Huang A, Sifre L, Cai T, Agapiou JP, Jaderberg M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature. 2019;575(7782):350–4. https://doi.org/10.1038/s41586-019-1724-z.

    Article  CAS  PubMed  Google Scholar 

  • Wang X-P, Zhong J, Lei T, Wang H-J, Zhu L-N, Chu S, Liu L. Epidemiology of traumatic brain injury-associated epilepsy in western China: an analysis of multicenter data. Epilepsy Res. 2020;164:106354. https://doi.org/10.1016/j.eplepsyres.2020.106354.

    Article  PubMed  Google Scholar 

  • Yeboah D, Steinmeister L, Hier DB, Hadi B, Wunsch DC, Olbricht GR, Obafemi-Ajayi T. An explainable and statistically validated ensemble clustering model applied to the identification of traumatic brain injury subgroups. IEEE Access. 2020;8:180690–705.

    Article  Google Scholar 

  • Zhuang Y, Yang Q, Han T, O’Malley R, Kumar A, Gerald RE, Huang J. Fiber optic sensor embedded smart helmet for real-time impact sensing and analysis through machine learning. J Neurosci Methods. 2021;351:109073. https://doi.org/10.1016/j.jneumeth.2021.109073.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fabrizio, C., Termine, A. (2023). Artificial Intelligence Applications for Traumatic Brain Injury Research and Clinical Management. In: Petrosini, L. (eds) Neurobiological and Psychological Aspects of Brain Recovery. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-24930-3_18

Download citation

Publish with us

Policies and ethics