Skip to main content

Prenatal and Childhood Stressors Promote Chronic Disease in Later Life

  • Chapter
  • First Online:
Nutritional Health

Part of the book series: Nutrition and Health ((NH))

Abstract

There is a pandemic of chronic disease that is widespread across the globe. Low birthweight, as a result of slow fetal growth, is associated with increased rates of chronic disease including coronary heart disease and related disorders, stroke, hypertension, obesity, and type 2 diabetes. These associations extend across the entire range of birthweight. People who were small at birth have elevated risks for later disease because they have reduced functional capacity in specific organs, altered settings of hormones and metabolism, or harmful responses to adverse influences in the postnatal environment. People born at the high end of the birthweight scale who put on weight rapidly during infancy and early childhood also have elevated risks for chronic disease. The most common chronic diseases are the consequences of developmental plasticity, the biological process by which one genotype can give rise to a range of different physiological or morphological phenotypes in response to environmental stressors during development. This is often referred to as programming.

Slow growth in infancy and rapid weight gain after the age of one year further increase the risk of later disease. Slow fetal growth is the product of the mother’s body composition and diet before and during pregnancy, together with her metabolism. The placenta is complicit in the growth of the fetus and hence in the programing of disease. The vulnerability for adult-onset chronic disease can be firmly entrenched during prenatal stages but can also arise independently during childhood when individuals remain plastic, providing the underpinnings for harm from adverse childhood experiences that progress to chronic conditions and mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.

    Article  CAS  PubMed  Google Scholar 

  2. Osmond C, Barker DJ, Winter PD, Fall CH, Simmonds SJ. Early growth and death from cardiovascular disease in women. BMJ. 1993;307:1519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frankel S, Elwood P, Sweetnam P, Yarnell J, Smith GD. Birthweight, body-mass index in middle age, and incident coronary heart disease. Lancet. 1996;348:1478–80.

    Article  CAS  PubMed  Google Scholar 

  5. Stein CE, Fall CH, Kumaran K, Osmond C, Cox V, Barker DJ. Fetal growth and coronary heart disease in South India. Lancet. 1996;348:1269–73.

    Article  CAS  PubMed  Google Scholar 

  6. Rich-Edwards JW, Stampfer MJ, Manson JE, Rosner B, Hankinson SE, Colditz GA, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ. 1997;315:396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forsén T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJ. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ. 1997;315:837–40.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leon DA, Lithell HO, Vâgerö D, Koupilová I, Mohsen R, Berglund L, et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915-29. BMJ. 1998;317:241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forsén T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJ. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ. 1999;319:1403–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Forsén T, Osmond C, Eriksson JG, Barker DJ. Growth of girls who later develop coronary heart disease. Heart. 2004;90:20–4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eriksson JG, Forsén T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001;322:949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lithell HO, McKeigue PM, Berglund L, Mohsen R, Lithell UB, Leon DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50-60 years. BMJ. 1996;312:406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ. 1994;308:942–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forsén T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med. 2000;133:176–82.

    Article  PubMed  Google Scholar 

  15. Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130:278–84.

    Article  CAS  PubMed  Google Scholar 

  16. Newsome CA, Shiell AW, Fall CH, Phillips DI, Shier R, Law CM. Is birth weight related to later glucose and insulin metabolism? A systematic review. Diabet Med. 2003;20:339–48.

    Article  CAS  PubMed  Google Scholar 

  17. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311:171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nordman H, Jääskeläinen J, Voutilainen R. Birth size as a determinant of cardiometabolic risk factors in children. Horm Res Paediatr. 2020;93:144–53.

    Article  CAS  PubMed  Google Scholar 

  19. Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353:1802–9.

    Article  CAS  PubMed  Google Scholar 

  20. Stansfield BK, Fain ME, Bhatia J, Gutin B, Nguyen JT, Pollock NK. Nonlinear relationship between birth weight and visceral fat in adolescents. J Pediatr. 2016;174:185–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165:849–57.

    Article  PubMed  Google Scholar 

  22. Roberts CK, Barnard RJ. Effects of exercise and diet on chronic disease. J Appl Physiol. 1985;2005(98):3–30.

    Google Scholar 

  23. van Zyl C, van Wyk C. Exploring factors that could potentially have affected the first 1000 days of absent learners in South Africa: a qualitative study. Int J Environ Res Public Health. 2021;18:2768.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gilgoff R, Singh L, Koita K, Gentile B, Marques SS. Adverse childhood experiences, outcomes, and interventions. Pediatr Clin N Am. 2020;67:259–73.

    Article  Google Scholar 

  25. West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst. 1989;20:249–78.

    Article  Google Scholar 

  26. Davis L, Thornburg KL, Giraud GD. The effects of anaemia as a programming agent in the fetal heart. J Physiol. 2005;565:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bateson PPG, Martin PR. Design for a life: how behaviour develops. London: Jonathan Cape; 1999.

    Google Scholar 

  28. Jackson AA. All that glitters. Br Nutr Found Nutr Bullet. 2000;25:11–24.

    Article  Google Scholar 

  29. Mellanby E. Nutrition and child-bearing. Lancet. 1933;2:1131–7.

    Article  Google Scholar 

  30. Brooks AA, Johnson MR, Steer PJ, Pawson ME, Abdalla HI. Birth weight: nature or nurture? Early Hum Dev. 1995;42:29–35.

    Article  CAS  PubMed  Google Scholar 

  31. McCance RA. Food, growth, and time. Lancet. 1962;2:621–6.

    Article  CAS  PubMed  Google Scholar 

  32. Harding JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001;30:15–23.

    Article  CAS  PubMed  Google Scholar 

  33. Lynch CJ. Introducing the New NIH Office of Nutrition Research (ONR): National Institutes of Health; 2021. https://ninr.nih.gov/sites/files/docs/NIH_Office_of_Nutrition_Research_508c.pdf. Acessed 8 Feb 2022.

  34. National Institute of Health. 2020-2030 strategic plan for NIH nutrition research: a report of the NIH Nutrition Research Task Force. National Institute of Health; 2020.

    Google Scholar 

  35. Thornburg KL, Bagby SP, Giraud GD. Maternal adaptations to pregnancy. In: Tony M, Plant AJZ, editors. Knobil and Neill’s physiology of reproduction. 4th ed. Academic Press; 2015. p. 1927-1955.

    Google Scholar 

  36. Barker DJ, Forsén T, Uutela A, Osmond C, Eriksson JG. Size at birth and resilience to effects of poor living conditions in adult life: longitudinal study. BMJ. 2001;323:1273–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marmot M, Wilkinson RG. Psychosocial and material pathways in the relation between income and health: a response to Lynch et al. BMJ. 2001;322:1233–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Phillips DI, Walker BR, Reynolds RM, Flanagan DE, Wood PJ, Osmond C, et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension. 2000;35:1301–6.

    Article  CAS  PubMed  Google Scholar 

  39. Thornburg KL, Boone-Heinonen J, Valent AM. Social determinants of placental health and future disease risks for babies. Obstet Gynecol Clin North Am. 2020;47:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barker DJ, Eriksson JG, Forsén T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.

    Article  CAS  PubMed  Google Scholar 

  41. Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, et al. Birth weight and adult hypertension and obesity in women. Circulation. 1996;94:1310–5.

    Article  CAS  PubMed  Google Scholar 

  42. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18:815–31.

    Article  CAS  PubMed  Google Scholar 

  43. Brenner BM, Chertow GM. Congenital oligonephropathy: an inborn cause of adult hypertension and progressive renal injury? Curr Opin Nephrol Hypertens. 1993;2:691–5.

    Article  CAS  PubMed  Google Scholar 

  44. Ingelfinger JR. Is microanatomy destiny? N Engl J Med. 2003;348:99–100.

    Article  PubMed  Google Scholar 

  45. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101–8.

    Article  PubMed  Google Scholar 

  46. Ylihärsilä H, Eriksson JG, Forsén T, Kajantie E, Osmond C, Barker DJ. Self-perpetuating effects of birth size on blood pressure levels in elderly people. Hypertension. 2003;41:446–50.

    Article  PubMed  Google Scholar 

  47. Lackland DT, Egan BM, Syddall HE, Barker DJ. Associations between birth weight and antihypertensive medication in black and white medicaid recipients. Hypertension. 2002;39:179–83.

    Article  CAS  PubMed  Google Scholar 

  48. Thornburg KL, Friedman JE, Hill D, Kolahi K, Kroenke C. Visualizing structural underpinnings of DOHaD. In: Lucilla Poston KG, Gluckman P, Hanson M, editors. Developmental origins of health & disease. 2nd ed.; 2022.

    Google Scholar 

  49. Rolland-Cachera MF, Deheeger M, Guilloud-Bataille M, Avons P, Patois E, Sempé M. Tracking the development of adiposity from one month of age to adulthood. Ann Hum Biol. 1987;14:219–29.

    Article  CAS  PubMed  Google Scholar 

  50. Eriksson JG, Forsén T, Tuomilehto J, Osmond C, Barker DJ. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia. 2003;46:190–4.

    Article  CAS  PubMed  Google Scholar 

  51. Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350:865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Metcalfe NB, Monaghan P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001;16:254–60.

    Article  PubMed  Google Scholar 

  53. Barker DJP, Kajantie E, Osmond C, Thornburg KL, Eriksson JG. How boys grow determines how long they live. Am J Hum Biol. 2011;23:412–6.

    Article  PubMed Central  Google Scholar 

  54. Widdowson EM, Crabb DE, Milner RD. Cellular development of some human organs before birth. Arch Dis Child. 1972;47:652–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eriksson JG, Forsén T, Tuomilehto J, Jaddoe VW, Osmond C, Barker DJ. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia. 2002;45:342–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ong KK. Catch-up growth in small for gestational age babies: good or bad? Curr Opin Endocrinol Diabetes Obes. 2007;14:30–4.

    Article  CAS  PubMed  Google Scholar 

  57. Eriksson JG, Lindi V, Uusitupa M, Forsén TJ, Laakso M, Osmond C, et al. The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes. 2002;51:2321–4.

    Article  CAS  PubMed  Google Scholar 

  58. Bostock CV, Soiza RL, Whalley LJ. Genetic determinants of ageing processes and diseases in later life. Maturitas. 2009;62:225–9.

    Article  CAS  PubMed  Google Scholar 

  59. Barker DJ, Forsén T, Eriksson JG, Osmond C. Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J Hypertens. 2002;20:1951–6.

    Article  CAS  PubMed  Google Scholar 

  60. Kuh D, Ben-Shlomo Y. A life-course approach to chronic disease epidemiology. Oxford: Oxford University Press; 1997.

    Google Scholar 

  61. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351:173–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kramer MS. Effects of energy and protein intakes on pregnancy outcome: an overview of the research evidence from controlled clinical trials. Am J Clin Nutr. 1993;58:627–35.

    Article  CAS  PubMed  Google Scholar 

  63. Barker DJP. Mothers, babies and health in later life. 2nd ed. Edinburgh: Churchill Livingstone; 1998.

    Google Scholar 

  64. Koletzko B, Godfrey KM, Poston L, Szajewska H, van Goudoever JB, de Waard M, et al. Nutrition during pregnancy, lactation and early childhood and its implications for maternal and long-term child health: the early nutrition project recommendations. Ann Nutr Metab. 2019;74:93–106.

    Article  CAS  PubMed  Google Scholar 

  65. National Academies of Sciences. In: Harrison M, editor. Nutrition during pregnancy and lactation: exploring new evidence: proceedings of a workshop. Washington, DC: National Academies Press; 2020.

    Google Scholar 

  66. Stoody EE, Spahn JM, Casavale KO. The pregnancy and birth to 24 months project: a series of systematic reviews on diet and health. Am J Clin Nutr. 2019;109(Suppl 7):685s–97s.

    Article  PubMed  Google Scholar 

  67. Raghavan R, Dreibelbis C, Kingshipp BL, Wong YP, Abrams B, Gernand AD, et al. Dietary patterns before and during pregnancy and birth outcomes: a systematic review. Am J Clin Nutr. 2019;109(Suppl 7):729s–56s.

    Article  PubMed  Google Scholar 

  68. Raghavan R, Dreibelbis C, Kingshipp BL, Wong YP, Abrams B, Gernand AD, et al. Dietary patterns before and during pregnancy and maternal outcomes: a systematic review. Am J Clin Nutr. 2019;109(Suppl 7):705s–28s.

    Article  PubMed  Google Scholar 

  69. Güngör D, Nadaud P, LaPergola CC, Dreibelbis C, Wong YP, Terry N, et al. Infant milk-feeding practices and diabetes outcomes in offspring: a systematic review. Am J Clin Nutr. 2019;109(Suppl 7):817s–37s.

    Article  PubMed  PubMed Central  Google Scholar 

  70. USDA. Dietary guidelines for Americans 2020-2025; 2020. https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelinesfor_Americans_2020-2025.pdf. Accessed 8 Feb 2022.

  71. Marshall NE, Abrams B, Barbour LA, Catalano P, Christian P, Friedman JE, et al. The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol. 2022;226(5):607–32. S0002-9378(21)02728-9.

    Article  PubMed  Google Scholar 

  72. Harding J, Liu L, Evans P, Oliver M, Gluckman P. Intrauterine feeding of the growth retarded fetus: can we help? Early Hum Dev. 1992;29:193–7.

    Article  CAS  PubMed  Google Scholar 

  73. Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–202.

    Article  CAS  PubMed  Google Scholar 

  74. Walker SK, Hartwich KM, Robinson JS. Long-term effects on offspring of exposure of oocytes and embryos to chemical and physical agents. Hum Reprod Update. 2000;6:564–77.

    Article  CAS  PubMed  Google Scholar 

  75. Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010;22:330–5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stewart RJ, Sheppard H, Preece R, Waterlow JC. The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br J Nutr. 1980;43:403–12.

    Article  CAS  PubMed  Google Scholar 

  77. Chango A, Pogribny IP. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients. 2015;7:2748–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thornburg KL, Shannon J, Thuillier P, Turker MS. In utero life and epigenetic predisposition for disease. Adv Genet. 2010;71:57–78.

    Article  CAS  PubMed  Google Scholar 

  79. Wallack L, Thornburg K. Developmental origins, epigenetics, and equity: moving upstream. Matern Child Health J. 2016;20:935–40.

    Article  PubMed  Google Scholar 

  80. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Emanuel I, Filakti H, Alberman E, Evans SJ. Intergenerational studies of human birthweight from the 1958 birth cohort. 1. Evidence for a multigenerational effect. Br J Obstet Gynaecol. 1992;99:67–74.

    Article  CAS  PubMed  Google Scholar 

  82. Godfrey KM, Barker DJ, Robinson S, Osmond C. Maternal birthweight and diet in pregnancy in relation to the infant’s thinness at birth. Br J Obstet Gynaecol. 1997;104:663–7.

    Article  CAS  PubMed  Google Scholar 

  83. Nandi S, Tripathi SK, Gupta PSP, Mondal S. Nutritional and metabolic stressors on ovine oocyte development and granulosa cell functions in vitro. Cell Stress Chaperones. 2018;23:357–71.

    Article  CAS  PubMed  Google Scholar 

  84. Prasad S, Tiwari M, Pandey AN, Shrivastav TG, Chaube SK. Impact of stress on oocyte quality and reproductive outcome. J Biomed Sci. 2016;23:36.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Belizán JM, Villar J, Bergel E, del Pino A, Di Fulvio S, Galliano SV, et al. Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ. 1997;315:281–5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Bleker OP. Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2000;72:1101–6.

    Article  CAS  PubMed  Google Scholar 

  87. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45. Heart. 2000;84:595–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roseboom TJ, van der Meulen JH, van Montfrans GA, Ravelli AC, Osmond C, Barker DJ, et al. Maternal nutrition during gestation and blood pressure in later life. J Hypertens. 2001;19:29–34.

    Article  CAS  PubMed  Google Scholar 

  89. Campbell DM, Hall MH, Barker DJ, Cross J, Shiell AW, Godfrey KM. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynaecol. 1996;103:273–80.

    Article  CAS  PubMed  Google Scholar 

  90. James WP. Long-term fetal programming of body composition and longevity. Nutr Rev. 1997;55:S31–41; discussion S-3.

    Article  CAS  PubMed  Google Scholar 

  91. Catalano PM, Thomas AJ, Huston LP, Fung CM. Effect of maternal metabolism on fetal growth and body composition. Diabetes Care. 1998;21(Suppl 2):B85–90.

    PubMed  Google Scholar 

  92. Sibley C. The pregnant woman. In: Case RM, editor. Human physiology: age, stress, and the environment. 1st ed. Oxford: Oxford University Press; 1994. p. 3–27.

    Google Scholar 

  93. Fall CH, Stein CE, Kumaran K, Cox V, Osmond C, Barker DJ, et al. Size at birth, maternal weight, and type 2 diabetes in South India. Diabet Med. 1998;15:220–7.

    Article  CAS  PubMed  Google Scholar 

  94. Shiell AW, Campbell-Brown M, Haselden S, Robinson S, Godfrey KM, Barker DJ. High-meat, low-carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension. 2001;38:1282–8.

    Article  CAS  PubMed  Google Scholar 

  95. Mi J, Law C, Zhang KL, Osmond C, Stein C, Barker D. Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med. 2000;132:253–60.

    Article  CAS  PubMed  Google Scholar 

  96. Margetts BM, Rowland MG, Foord FA, Cruddas AM, Cole TJ, Barker DJ. The relation of maternal weight to the blood pressures of Gambian children. Int J Epidemiol. 1991;20:938–43.

    Article  CAS  PubMed  Google Scholar 

  97. Godfrey KM, Forrester T, Barker DJ, Jackson AA, Landman JP, Hall JS, et al. Maternal nutritional status in pregnancy and blood pressure in childhood. Br J Obstet Gynaecol. 1994;101:398–403.

    Article  CAS  PubMed  Google Scholar 

  98. Clark PM, Atton C, Law CM, Shiell A, Godfrey K, Barker DJ. Weight gain in pregnancy, triceps skinfold thickness, and blood pressure in offspring. Obstet Gynecol. 1998;91:103–7.

    Article  CAS  PubMed  Google Scholar 

  99. Adair LS, Kuzawa CW, Borja J. Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation. 2001;104:1034–9.

    Article  CAS  PubMed  Google Scholar 

  100. Duggleby SL, Jackson AA. Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clin Sci. 2001;101:65–72.

    Article  CAS  Google Scholar 

  101. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci. 2007;113:1–13.

    Article  CAS  Google Scholar 

  102. Hamilton WJBJ, Mossman HW. Human embryology. Cambridge: W. Heffer & Sons; 1945.

    Google Scholar 

  103. McCrabb GJ, Egan AR, Hosking BJ. Maternal undernutrition during mid-pregnancy in sheep. Placental size and its relationship to calcium transfer during late pregnancy. Br J Nutr. 1991;65:157–68.

    Article  CAS  PubMed  Google Scholar 

  104. Burton GJ, Barker DJP, Moffett A, Thornburg K, editors. The placenta and human developmental programming. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  105. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG. The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol. 2010;54:525–30.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357:53–6.

    Article  CAS  PubMed  Google Scholar 

  107. Kajantie E, Thornburg KL, Eriksson JG, Osmond C, Barker DJ. In preeclampsia, the placenta grows slowly along its minor axis. Int J Dev Biol. 2010;54:469–73.

    Article  PubMed  Google Scholar 

  108. Eriksson J, Forsén T, Tuomilehto J, Osmond C, Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension. 2000;36:790–4.

    Article  CAS  PubMed  Google Scholar 

  109. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301:259–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Martyn CN, Barker DJ, Osmond C. Mothers’ pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet. 1996;348:1264–8.

    Article  CAS  PubMed  Google Scholar 

  111. Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG. The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail. 2010;12:819–25.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Eriksson JG, Kajantie E, Thornburg KL, Osmond C, Barker DJ. Mother’s body size and placental size predict coronary heart disease in men. Eur Heart J. 2011;32:2297–303.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG. The prenatal origins of lung cancer. II. The placenta. Am J Hum Biol. 2010;22:512–6.

    Article  PubMed  Google Scholar 

  114. Barker DJ, Osmond C, Thornburg KL, Kajantie E, Forsen TJ, Eriksson JG. A possible link between the pubertal growth of girls and breast cancer in their daughters. Am J Hum Biol. 2008;20:127–31.

    Article  PubMed  Google Scholar 

  115. Barker DJ, Osmond C, Thornburg KL, Kajantie E, Eriksson JG. A possible link between the pubertal growth of girls and ovarian cancer in their daughters. Am J Hum Biol. 2008;20:659–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to recognize the enormous contributions of David J. P. Barker, MD, PhD, FRS, CBE, FMedSci (1938–2013) MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, UK, to the field of fetal programming, his passion. This chapter is based on his previous writings which he presented in the third edition of this book, some of which were carried directly to this version. Were he to have lived until now, we would have written this chapter together. This chapter honors our years of collaboration and friendship and the role of his wife, Jan, in bringing this field to the fore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent L. R. Thornburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thornburg, K.L.R. (2023). Prenatal and Childhood Stressors Promote Chronic Disease in Later Life. In: Temple, N.J., Wilson, T., Jacobs, Jr., D.R., Bray, G.A. (eds) Nutritional Health. Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-031-24663-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24663-0_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-24662-3

  • Online ISBN: 978-3-031-24663-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics