Skip to main content

Neural Networks in Imandra: Matrix Representation as a Verification Choice

  • Conference paper
  • First Online:
Software Verification and Formal Methods for ML-Enabled Autonomous Systems (NSV 2022, FoMLAS 2022)

Abstract

The demand for formal verification tools for neural networks has increased as neural networks have been deployed in a growing number of safety-critical applications. Matrices are a data structure essential to formalising neural networks. Functional programming languages encourage diverse approaches to matrix definitions. This feature has already been successfully exploited in different applications. The question we ask is whether, and how, these ideas can be applied in neural network verification. A functional programming language Imandra combines the syntax of a functional programming language and the power of an automated theorem prover. Using these two key features of Imandra, we explore how different implementations of matrices can influence automation of neural network verification.

E. Komendantskaya—Acknowledges support of EPSRC grant EP/T026952/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in these experiments, the implementation of weight matrices as lists of lists is implicit – we redefine matrix manipulation functions that are less general but more convenient for proofs by induction.

References

  1. VNN (2022). https://sites.google.com/view/vnn2022

  2. Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.): NFM 2020. LNCS, vol. 12229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6

    Book  Google Scholar 

  3. Bagnall, A., Stewart, G.: Certifying true error: machine learning in Coq with verified generalization guarantees. AAAI 33, 2662–2669 (2019)

    Article  Google Scholar 

  4. Boyer, R.S., Moore, J.S.: A Computational Logic. ACM Monograph Series. Academic Press, New York (1979)

    MATH  Google Scholar 

  5. Casadio, M., et al.: Neural network robustness as a verification property: a principled case study. In: Computer Aided Verification (CAV 2022). Lecture Notes in Computer Science, Springer, Cham (2022) https://doi.org/10.1007/978-3-031-13185-1_11

  6. Desmartin, R., Passmore, G., Komendantskaya, E., Daggitt, M.L.: CNN library in Imandra. https://github.com/aisec-private/ImandraNN (2022)

  7. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_9

    Chapter  Google Scholar 

  8. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: S &P (2018)

    Google Scholar 

  9. Grant, P.W., Sharp, J.A., Webster, M.F., Zhang, X.: Sparse matrix representations in a functional language. J. Funct. Program. 6(1), 143–170 (1996). https://doi.org/10.1017/S095679680000160X, https://www.cambridge.org/core/journals/journal-of-functional-programming/article/sparse-matrix-representations-in-a-functional-language/669431E9C12EDC16F02603D833FAC31B, publisher: Cambridge University Press

  10. Heras, J., Poza, M., Dénès, M., Rideau, L.: Incidence simplicial matrices formalized in Coq/SSReflect. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp. 30–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22673-1_3

    Chapter  Google Scholar 

  11. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24–28, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3–29 (2017)

    Google Scholar 

  12. Katz, G., Barrett, C., Dill, D., Ju-lian, K., Kochenderfer, M.: Reluplex: an Efficient SMT solver for verifying deep neural networks. In: CAV (2017)

    Google Scholar 

  13. Katz, G., et al.: The marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  14. Kokke, W., Komendantskaya, E., Kienitz, D., Atkey, R., Aspinall, D.: Neural networks, secure by construction. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 67–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6_4

    Chapter  Google Scholar 

  15. LeCun, Y., Denker, J., Solla, S.: Optimal Brain Damage. In: Advances in Neural Information Processing Systems, vol. 2. Morgan-Kaufmann (1989). https://papers.nips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html

  16. De Maria, E., et al.: On the use of formal methods to model and verify neuronal archetypes. Front. Comput. Sci. 16(3), 1–22 (2022). https://doi.org/10.1007/s11704-020-0029-6

    Article  Google Scholar 

  17. Passmore, G., et al.: The Imandra automated reasoning system (System Description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_30

    Chapter  MATH  Google Scholar 

  18. Passmore, G.O.: Some lessons learned in the industrialization of formal methods for financial algorithms. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 717–721. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_39

    Chapter  Google Scholar 

  19. Sill, J.: Monotonic Networks. California Institute of Technology, Pasadena (1998)

    MATH  Google Scholar 

  20. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. PACMPL 3(POPL), 41:1–41:30 (2019). https://doi.org/10.1145/3290354

  21. Wehenkel, A., Louppe, G.: Unconstrained monotonic neural networks. In: Advances in Neural Information Processing Systems : Annual Conference on Neural Information Processing Systems 2019, IPS 2019, December 8–14, 2019, Vancouver, BC, Canada 32, pp. 1543–1553 (2019)

    Google Scholar 

  22. Wood, J.: Vectors and Matrices in Agda (Aug 2019). https://personal.cis.strath.ac.uk/james.wood.100/blog/html/VecMat.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remi Desmartin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Desmartin, R., Passmore, G., Kommendentskaya, E. (2022). Neural Networks in Imandra: Matrix Representation as a Verification Choice. In: Isac, O., Ivanov, R., Katz, G., Narodytska, N., Nenzi, L. (eds) Software Verification and Formal Methods for ML-Enabled Autonomous Systems. NSV FoMLAS 2022 2022. Lecture Notes in Computer Science, vol 13466. Springer, Cham. https://doi.org/10.1007/978-3-031-21222-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21222-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21221-5

  • Online ISBN: 978-3-031-21222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics