Skip to main content

Does Order Simultaneity Affect the Data Mining Task in Financial Markets? – Effect Analysis of Order Simultaneity Using Artificial Market

  • Conference paper
  • First Online:
PRIMA 2022: Principles and Practice of Multi-Agent Systems (PRIMA 2022)

Abstract

This study analyzed the effect of order simultaneity in financial markets on data mining tasks, using multi-agent simulations. In financial markets, multiple orders are submitted almost simultaneously or within very quick succession; such orders are thought of as independent of one another. We call this phenomenon order simultaneity. If order simultaneity increases, tick-time-level data mining methods are assumed to worsen because the randomness of the order sequences increases. The present study analyzed this effect using artificial market simulations, which enable experimentation in a fully-controlled environment. As a data mining task, we employed a Generative Adversarial Network (GAN) for the financial market to perform next order generation (prediction). We analyzed the impact of order simultaneity by applying the GAN to simulated data in artificial market simulations with various environmental parameters. We found that the effect of order simultaneity is limited for the next order generation task, which can be said to be the ultimate prediction task in financial markets. This analysis also supports the validity of the current approach of utilizing GANs to model order time series in financial markets. Moreover, our study demonstrates the utility of combining artificial market simulations and data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks (2017). https://doi.org/10.48550/arXiv.1701.04862

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). https://doi.org/10.48550/arXiv.1701.07875

  3. Arthur, W.B., Holland, J.H., LeBaron, B., Palmer, R., Tayler, P.: Asset pricing under endogenous expectations in an artificial stock market. In: The Economy as an Evolving Complex System II, pp. 15–44 (1997). https://doi.org/10.1201/9780429496639-2

  4. Battiston, S., et al.: Complexity theory and financial regulation: economic policy needs interdisciplinary network analysis and behavioral modeling. Science 351(6275), 818–819 (2016). https://doi.org/10.1126/science.aad0299

    Article  Google Scholar 

  5. Byrd, D., Hybinette, M., Hybinette Balch, T., Morgan, J.: ABIDES: towards high-fidelity multi-agent market simulation. In: Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, vol. 12 (2020). https://doi.org/10.1145/3384441.3395986

  6. Chiarella, C., Iori, G.: A simulation analysis of the microstructure of double auction markets. Quant. Finance 2(5), 346–353 (2002). https://doi.org/10.1088/1469-7688/2/5/303

    Article  MATH  Google Scholar 

  7. Chu, C., Zhmoginov, A., Sandler, M.: CycleGAN, a Master of Steganography (2017). https://doi.org/10.48550/arXiv.1712.02950

  8. Cui, W., Brabazon, A.: An agent-based modeling approach to study price impact. In: Proceedings of 2012 IEEE Conference on Computational Intelligence for Financial Engineering and Economics, CIFEr 2012, pp. 241–248 (2012). https://doi.org/10.1109/CIFEr.2012.6327798

  9. Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks. Adv. Neural. Inf. Process. Syst. 28, 1486–1494 (2015). https://doi.org/10.5555/2969239.2969405

    Article  Google Scholar 

  10. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial Feature Learning (2016). https://doi.org/10.48550/arXiv.1605.09782

  11. Edmonds, S.M., Bruce: towards good social science. J. Artif. Soc. Soc. Simul. 8(4) (2005). https://www.jasss.org/8/4/13.html

  12. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460(7256), 685–686 (2009). https://doi.org/10.1038/460685a

    Article  Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014). https://doi.org/10.1145/3422622

  14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs montreal institute for learning algorithms. Adv. Neural. Inf. Process. Syst. 30, 5767–5777 (2017). https://doi.org/10.5555/3295222.3295327

    Article  Google Scholar 

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017). https://doi.org/10.5555/3295222.3295408

  16. Hirano, M., Izumi, K., Shimada, T., Matsushima, H., Sakaji, H.: Impact Analysis of Financial Regulation on Multi-Asset Markets Using Artificial Market Simulations. J. Risk Fin. Manage. 13(4), 75 (2020). https://doi.org/10.3390/jrfm13040075

    Article  Google Scholar 

  17. Hirano, M., Sakaji, H., Izumi, K.: Concept and practice of artificial market data mining platform. In: 2022 IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr), pp. 1–10 (2022). https://doi.org/10.1109/CIFEr52523.2022.9776095

  18. Hirano, M., Sakaji, H., Izumi, K.: Policy gradient stock GAN for realistic discrete order data generation in financial markets (2022). https://doi.org/10.48550/arXiv.2204.13338

  19. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017). https://doi.org/10.1109/CVPR.2017.632

  20. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: 6th International Conference on Learning Representations (2018)

    Google Scholar 

  21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019). https://doi.org/10.1109/TPAMI.2020.2970919

  22. Kohda, S., Yoshida, K.: Analysis of high-frequency trading from the viewpoint of tick distance and Execution [in Japanese]. In: Proceedings of the 22nd Meeting of Special Interest Group on Financial Informatics of Japanese Society for Artificial Intelligence (2019). https://sigfin.org/?022-02

  23. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558–1566 (2016). https://doi.org/10.5555/3045390.3045555

  24. Leal, S.J., Napoletano, M.: Market stability vs. market resilience: regulatory policies experiments in an agent-based model with low- and high-frequency trading. J. Econ. Behav. Organ. 157, 15–41 (2019). https://doi.org/10.1016/j.jebo.2017.04.013

  25. Li, D., Chen, D., Goh, J., Ng, S.K.: Anomaly detection with generative adversarial networks for multivariate time series (2018). https://doi.org/10.48550/arXiv.1809.04758

  26. Li, J., Wang, X., Lin, Y., Sinha, A., Wellman, M.: Generating realistic stock market order streams. AAAI Conf. Artif. Intell. 34(01), 727–734 (2020). https://doi.org/10.1609/aaai.v34i01.5415

    Article  Google Scholar 

  27. Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397(6719), 498–500 (1999). https://doi.org/10.1038/17290

    Article  Google Scholar 

  28. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2794–2802 (2017). https://doi.org/10.1109/ICCV.2017.304

  29. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets (1784), 1–7 (2014). https://doi.org/10.48550/arXiv.1411.1784

  30. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: 6th International Conference on Learning Representations (2018). https://doi.org/10.48550/arXiv.1802.05957

  31. Mizuta, T.: An agent-based model for designing a financial market that works well (2019). https://doi.org/10.1109/SSCI47803.2020.9308376

  32. Mizuta, T., et al.: Effects of price regulations and dark pools on financial market stability: an investigation by multiagent simulations. Intell. Syst. Account. Finance Manage. 23(1–2), 97–120 (2016). https://doi.org/10.1002/isaf.1374

    Article  Google Scholar 

  33. Naritomi, Y., Adachi, T.: Data augmentation of high frequency financial data using generative adversarial network. In: 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 641–648. IEEE (2020). https://doi.org/10.1109/WIIAT50758.2020.00097

  34. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers using variational divergence minimization. In: 30th International Conference on Neural Information Processing Systems, pp. 271–279 (2016). https://doi.org/10.5555/3157096.3157127

  35. Paddrik, M., Hayes, R., Todd, A., Yang, S., Beling, P., Scherer, W.: An agent based model of the E-Mini S &P 500 applied to flash crash analysis. In: Proceedings of 2012 IEEE Conference on Computational Intelligence for Financial Engineering and Economics, CIFEr 2012, pp. 257–264 (2012). https://doi.org/10.1109/CIFEr.2012.6327800

  36. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). https://doi.org/10.48550/arXiv.1511.06434

  37. Sato, H., Koyama, Y., Kurumatani, K., Shiozawa, Y., Deguchi, H.: U-mart: a test bed for interdisciplinary research into agent-based artificial markets. In: Aruka, Y. (eds) Evolutionary Controversies in Economics, pp. 179–190. Springer, Tokyo (2001). https://doi.org/10.1007/978-4-431-67903-5_13

  38. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  39. Torii, T., et al.: Plham: platform for large-scale and high-frequency artificial market (2016). https://github.com/plham/plham

  40. Torii, T., et al.: PlhamJ (2019). https://github.com/plham/plhamJ

  41. Torii, T., Izumi, K., Yamada, K.: Shock transfer by arbitrage trading: analysis using multi-asset artificial market. Evol. Inst. Econ. Rev. 12(2), 395–412 (2016). https://doi.org/10.1007/s40844-015-0024-z

    Article  Google Scholar 

  42. Torii, T., Kamada, T., Izumi, K., Yamada, K.: Platform design for large-scale artificial market simulation and preliminary evaluation on the K computer. Artif. Life Robot. 22(3), 301–307 (2017). https://doi.org/10.1007/s10015-017-0368-z

    Article  Google Scholar 

  43. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992). https://doi.org/10.1007/BF00992696

    Article  MATH  Google Scholar 

  44. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-Based Anomaly Detection (2018). https://doi.org/10.48550/arXiv.1802.06222

  45. Zhang, K., Zhong, G., Dong, J., Wang, S., Wang, Y.: Stock market prediction based on generative adversarial. Network 147, 400–406 (2019). https://doi.org/10.1016/j.procs.2019.01.256

    Article  Google Scholar 

  46. Zhou, X., Pan, Z., Hu, G., Tang, S., Zhao, C.: Stock market prediction on high-frequency data using generative adversarial nets. Math. Prob. Eng. 2018 (2018). https://doi.org/10.1155/2018/4907423

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP 21J20074 (Grant-in-Aid for JSPS Fellows).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hirano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirano, M., Izumi, K. (2023). Does Order Simultaneity Affect the Data Mining Task in Financial Markets? – Effect Analysis of Order Simultaneity Using Artificial Market. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds) PRIMA 2022: Principles and Practice of Multi-Agent Systems. PRIMA 2022. Lecture Notes in Computer Science(), vol 13753. Springer, Cham. https://doi.org/10.1007/978-3-031-21203-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21203-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21202-4

  • Online ISBN: 978-3-031-21203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics