Skip to main content

Deep Cross-Modality and Resolution Graph Integration for Universal Brain Connectivity Mapping and Augmentation

  • Conference paper
  • First Online:
Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis (ISGIE 2022, GRAIL 2022)

Abstract

The connectional brain template (CBT) captures the shared traits across all individuals of a given population of brain connectomes, thereby acting as a fingerprint. Estimating a CBT from a population where brain graphs are derived from diverse neuroimaging modalities (e.g., functional and structural) and at different resolutions (i.e., number of nodes) remains a formidable challenge to solve. Such network integration task allows for learning a rich and universal representation of the brain connectivity across varying modalities and resolutions. The resulting CBT can be substantially used to generate entirely new multimodal brain connectomes, which can boost the learning of the downs-stream tasks such as brain state classification. Here, we propose the Multimodal Multiresolution Brain Graph Integrator Network (i.e., M2GraphIntegrator), the first multimodal multiresolution graph integration framework that maps a given connectomic population into a well-centered CBT. M2GraphIntegrator first unifies brain graph resolutions by utilizing resolution-specific graph autoencoders. Next, it integrates the resulting fixed-size brain graphs into a universal CBT lying at the center of its population. To preserve the population diversity, we further design a novel clustering-based training sample selection strategy which leverages the most heterogeneous training samples. To ensure the biological soundness of the learned CBT, we propose a topological loss that minimizes the topological gap between the ground-truth brain graphs and the learned CBT. Our experiments show that from a single CBT, one can generate realistic connectomic datasets including brain graphs of varying resolutions and modalities. We further demonstrate that our framework significantly outperforms benchmarks in reconstruction quality, augmentation task, centeredness and topological soundness.

E. Cinar and S.E. Haseki—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001)

    Article  Google Scholar 

  2. Essen, D., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62, 2222–31 (2012)

    Article  Google Scholar 

  3. Qiu, J., Qinglin, Z., Bi, T., Wu, G., Wei, D., Yang, W.: (Southwest university longitudinal imaging multimodal (SLIM) brain data repository: a long-term test-retest sample of young healthy adults in southwest china)

    Google Scholar 

  4. Biobank, U.: About UK biobank (2014). https://www.ukbiobank.ac.uk/about-biobank-uk

  5. Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015)

    Article  Google Scholar 

  6. Fornito, A., Zalesky, A., Bullmore, E.: Fundamentals of Brain Network Analysis. Academic Press (2016)

    Google Scholar 

  7. van den Heuvel, M.P., Sporns, O.: A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019)

    Article  Google Scholar 

  8. Seidlitz, J., et al.: Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231–247 (2018)

    Article  Google Scholar 

  9. Holmes, A.J., et al.: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures. Sci. Data 2, 1–16 (2015)

    Google Scholar 

  10. Rekik, I., Li, G., Lin, W., Shen, D.: Estimation of brain network atlases using diffusive-shrinking graphs: application to developing brains. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 385–397. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_31

    Chapter  Google Scholar 

  11. Dhifallah, S., Rekik, I., Initiative, A.D.N., et al.: Estimation of connectional brain templates using selective multi-view network normalization. Med. Image Anal. 59, 101567 (2020)

    Article  Google Scholar 

  12. Gurbuz, M.B., Rekik, I.: Deep graph normalizer: a geometric deep learning approach for estimating connectional brain templates. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 155–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_16

    Chapter  Google Scholar 

  13. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. arXiv preprint arXiv:2106.03535 (2021)

  14. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    Article  Google Scholar 

  15. Perl, Y.S., et al.: Data augmentation based on dynamical systems for the classification of brain states. Chaos, Solitons Fractals 139, 110069 (2020)

    Article  MathSciNet  Google Scholar 

  16. Sserwadda, A., Rekik, I.: Topology-guided cyclic brain connectivity generation using geometric deep learning. J. Neurosci. Methods 353, 108988 (2021)

    Article  Google Scholar 

  17. Khan, A., Fraz, K.: Post-training iterative hierarchical data augmentation for deep networks. Advances in Neural Information Processing Systems 33 (2020)

    Google Scholar 

  18. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

    Google Scholar 

  19. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  20. Mikołajczyk, A., Grochowski, M.:Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW). IEEE (2018) 117–122

    Google Scholar 

  21. Graa, O., Rekik, I.: Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes. J. Neurosci. Methods 327, 108344 (2019)

    Article  Google Scholar 

  22. Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.: Understanding data augmentation for classification: when to warp? In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6. IEEE (2016)

    Google Scholar 

  23. Du, Y., Fu, Z., Calhoun, V.D.: Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front. Neurosci. 12, 525 (2018)

    Article  Google Scholar 

  24. Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333 (2014)

    Article  Google Scholar 

  25. Demir, U., Gharsallaoui, M.A., Rekik, I.: Clustering-based deep brain multigraph integrator network for learning connectional brain templates. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, pp. 109–120 (2020)

    Google Scholar 

  26. Sağlam, M., Rekik, I.: Multi-scale profiling of brain multigraphs by eigen-based cross-diffusion and heat tracing for brain state profiling. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, pp. 142–151 (2020)

    Google Scholar 

  27. Isallari, M., Rekik, I.: Gsr-net: graph super-resolution network for predicting high-resolution from low-resolution functional brain connectomes. In: International Workshop on Machine Learning in Medical Imaging, pp. 139–149 (2020)

    Google Scholar 

  28. Mhiri, I., Mahjoub, M.A., Rekik, I.: Stairwaygraphnet for inter-and intra-modality multi-resolution brain graph alignment and synthesis. In: International Workshop on Machine Learning in Medical Imaging, pp. 140–150 (2021)

    Google Scholar 

  29. Mhiri, I., Khalifa, A.B., Mahjoub, M.A., Rekik, I.: Brain graph super-resolution for boosting neurological disorder diagnosis using unsupervised multi-topology connectional brain template learning. Med. Image Anal. 65, 101768 (2020)

    Article  Google Scholar 

  30. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2017)

    Google Scholar 

  31. Shen, X., et al.: Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols 12, 506–518 (2017)

    Google Scholar 

  32. Kullback, S.: Information theory and statistics. Courier Corporation (1997)

    Google Scholar 

Download references

Acknowledgements

This work was funded by generous grants from the European H2020 Marie Sklodowska-Curie action (grant no. 101003403, http://basira-lab.com/normnets/) to I.R. and the Scientific and Technological Research Council of Turkey to I.R. under the TUBITAK 2232 Fellowship for Outstanding Researchers (no. 118C288, http://basira-lab.com/reprime/). However, all scientific contributions made in this project are owned and approved solely by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cinar, E., Haseki, S.E., Bessadok, A., Rekik, I. (2022). Deep Cross-Modality and Resolution Graph Integration for Universal Brain Connectivity Mapping and Augmentation. In: Manfredi, L., et al. Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis. ISGIE GRAIL 2022 2022. Lecture Notes in Computer Science, vol 13754. Springer, Cham. https://doi.org/10.1007/978-3-031-21083-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21083-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21082-2

  • Online ISBN: 978-3-031-21083-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics