Skip to main content

Hierarchical Clustering of Complex Energy Systems Using Pretopology

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (VEHITS 2021, SMARTGREENS 2021)

Abstract

This article attempts answering the following problematic: How to model and classify energy consumption profiles over a large distributed territory to optimize the management of buildings’ consumption?

Doing case-by-case in depth auditing of thousands of buildings would require a massive amount of time and money as well as a significant number of qualified people.Thus, an automated method must be developed to establish a relevant and effective recommendations system.

To answer this problematic, pretopology is used to model the sites’ consumption profiles and a multi-criterion hierarchical classification algorithm, using the properties of pretopological space, has been developed in a Python library.

To evaluate the results, three data sets are used: A generated set of dots of various sizes in a 2D space, a generated set of time series and a set of consumption time series of 400 real consumption sites from a French Energy company.

On the point data set, the algorithm is able to identify the clusters of points using their position in space and their size as parameter. On the generated time series, the algorithm is able to identify the time series clusters using Pearson’s correlation with an Adjusted Rand Index (ARI) of 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.eia.gov/.

  2. 2.

    https://www.iea.org/topics/energyefficiency/buildings/.

References

  1. Ahat, M., Amor, S.B., Bui, M., Bui, A., Guérard, G., Petermann, C.: Smart grid and optimization. Am. J. Oper. Res. 03(01), 196–206 (2013). https://doi.org/10.4236/ajor.2013.31A019, http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ajor.2013.31A019

  2. Auray, J.P., Bonnevay, S., Bui, M., Duru, G., Lamure, M.: Prétopologie et applications : un état de l’art. Studia Informatica Universalis (Hermann), 7, 27–44 (2009)

    Google Scholar 

  3. Belmandt, Z.: Manuel de prétopologie et ses Applications. Hermès science publications (1993)

    Google Scholar 

  4. Boemi, S.-N., Tziogas, C.: Indicators for buildings’ energy performance. In: Boemi, S.-N., Irulegi, O., Santamouris, M. (eds.) Energy Performance of Buildings, pp. 79–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-20831-2_5

    Chapter  Google Scholar 

  5. Bosom, J., Scius-Bertrand, A., Tran, H., Bui, M.: Multi-agent architecture of a MIBES for smart energy management. In: Hodoň, M., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2018. CCIS, vol. 863, pp. 18–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93408-2_2

    Chapter  Google Scholar 

  6. Bosom, J.: Conception de microservices intelligents pour la supervision de systèmes sociotechniques: application aux systèmes énergétiques. Ph.D. thesis, Université Paris sciences et lettres (2020)

    Google Scholar 

  7. Fleischhacker, A., Lettner, G., Schwabeneder, D., Auer, H.: Portfolio optimization of energy communities to meet reductions in costs and emissions. Energy 173, 1092–1105 (2019). https://doi.org/10.1016/j.energy.2019.02.104,http://www.sciencedirect.com/science/article/pii/S0360544219303032

  8. Gao, X., Malkawi, A.: A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm. Energy Build. 84, 607–616 (2014). https://doi.org/10.1016/j.enbuild.2014.08.030, http://www.sciencedirect.com/science/article/pii/S0378778814006720

  9. Guerard, G., Pichon, B., Nehai, Z.: Demand-response: let the devices take our decisions. In: SMARTGREENS, pp. 119–126 (2017)

    Google Scholar 

  10. Guérard, G., Ben Amor, S., Bui, A.: A context-free smart grid model using pretopologic structure. In: 2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), pp. 1–7 (2015)

    Google Scholar 

  11. Habib, U., Zucker, G., Blochle, M., Judex, F., Haase, J.: Outliers detection method using clustering in buildings data. In: IECON 2015–41st Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp. 000694–000700 (2015)

    Google Scholar 

  12. Iglesias, F., Kastner, W.: Analysis of similarity measures in times series clustering for the discovery of building energy patterns. Energies 6(2), 579–597 (2013)

    Article  Google Scholar 

  13. Kriegel, H.P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdisc. Rev.: Data Min. Knowl. Discovery 1(3), 231–240 (2011)

    Google Scholar 

  14. Laborde, J.: Pretopology, a mathematical tool for structuring complex systems: methods, algorithms and applications. Ph.D. thesis, EPHE (2019)

    Google Scholar 

  15. Largeron, C., Bonnevay, S.: A pretopological approach for structural analysis. Inf. Sci. 144(1–4), 169–185 (2002)

    Article  MathSciNet  Google Scholar 

  16. Le, T.V.: Classification prétopologique des données: application à l’analyse des trajectoires patients. Ph.D. thesis, Lyon 1 (2007)

    Google Scholar 

  17. Levy, L.N., Bosom, J., Guérard, G., Amor, S.B., Bui, M., Tran, H.: Application of pretopological hierarchical clustering for buildings portfolio. In: SMARTGREENS, pp. 228–235 (2021)

    Google Scholar 

  18. Li, K., Ma, Z., Robinson, D., Lin, W., Li, Z.: A data-driven strategy to forecast next-day electricity usage and peak electricity demand of a building portfolio using cluster analysis, cubist regression models and particle swarm optimization. J. Cleaner Prod. 273, 123115 (2020). https://doi.org/10.1016/j.jclepro.2020.123115, http://www.sciencedirect.com/science/article/pii/S0959652620331607

  19. Li, K., Yang, R.J., Robinson, D., Ma, J., Ma, Z.: An agglomerative hierarchical clustering-based strategy using shared nearest neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library buildings. Energy 174, 735–748 (2019). https://doi.org/10.1016/j.energy.2019.03.003, http://www.sciencedirect.com/science/article/pii/S0360544219304074

  20. Lu, Y., Tian, Z., Peng, P., Niu, J., Li, W., Zhang, H.: GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system. Energy Build. 190, 49–60 (2019). https://doi.org/10.1016/j.enbuild.2019.02.014, http://www.sciencedirect.com/science/article/pii/S0378778818308326

  21. Marquant, J.F., Bollinger, L.A., Evins, R., Carmeliet, J.: A new combined clustering method to analyse the potential of district heating networks at large-scale. Energy 156, 73–83 (2018). https://doi.org/10.1016/j.energy.2018.05.027, http://www.sciencedirect.com/science/article/pii/S0360544218308478

  22. Miller, C.: Screening meter data: characterization of temporal energy data from large groups of non-residential buildings. Ph.D. thesis, ETH Zurich (2016)

    Google Scholar 

  23. Mills, E.: Building commissioning: a golden opportunity for reducing energy costs and greenhouse gas emissions in the United States. Energy Effi. 4(2), 145–173 (2011). https://doi.org/10.1007/s12053-011-9116-8

    Article  Google Scholar 

  24. Wang, S., Liu, H., Pu, H., Yang, H.: Spatial disparity and hierarchical cluster analysis of final energy consumption in china. Energy 197, 117195 (2020). https://doi.org/10.1016/j.energy.2020.117195

    Article  Google Scholar 

  25. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is the result of research conducted at the energy data management company Energisme. We thank Energisme for the resources that have been made available to us and Julio Laborde for his assistance with the conception of our pretopological hierarchical algorithm library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loup-Noé Lévy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lévy, LN., Bosom, J., Guerard, G., Amor, S.B., Bui, M., Tran, H. (2022). Hierarchical Clustering of Complex Energy Systems Using Pretopology. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021 2021. Communications in Computer and Information Science, vol 1612. Springer, Cham. https://doi.org/10.1007/978-3-031-17098-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17098-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17097-3

  • Online ISBN: 978-3-031-17098-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics