Skip to main content

Interaction-Aware Motion Prediction at Highways: A Comparison of Three Lane Changing Models

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (VEHITS 2021, SMARTGREENS 2021)

Abstract

The behavior of traffic participants is full of uncertainties in the real world. It depends on their intentions, the road layout, and the interaction between them. Probabilistic intention and motion predictions are unavoidable to safely navigate in complex scenarios. In this work, we propose a framework to compute the motion prediction of the surrounding vehicles taking into account all possible routes obtained from a given map. To that end, a Dynamic Bayesian Network is used to model the problem and a particle filter is applied to infer the probability of being on a specific route and the intention to change lanes. Our framework, based on Markov chains, is generic and can handle various road layouts and any number of vehicles. The framework is evaluated in two scenarios: a two-lane highway and a three-lane merging highway. Finally, the influence of a set of lane-changing methods is evaluated on the predictions of the vehicles present on the scene.

This work has been partially funded by the Spanish Ministry of Science and Innovation, the Community of Madrid through SEGVAUTO 4.0-CM (S2018-EMT-4362) Programme, and by the European Commission and ECSEL Joint Undertaking through the Project NEWCONTROL (826653).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trentin, V., Artuñedo, A., Godoy, J., Villagra, J.: A comparison of lateral intention models for interaction-aware motion prediction at highways. In: Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), Prague, Czech Republic, 28–30 April 2021 (2021)

    Google Scholar 

  2. Zhan, W., de La Fortelle, A., Chen, Y., Chan, C., Tomizuka, M.: Probabilistic prediction from planning perspective: problem formulation, representation simplification and evaluation metric. IEEE Intell. Veh. Symp. (IV) 2018, 1150–1156 (2018). https://doi.org/10.1109/IVS.2018.8500697

    Article  Google Scholar 

  3. Klingelschmitt, S., Damerow, F., Willert, V., Eggert, J.: Probabilistic situation assessment framework for multiple, interacting traffic participants in generic traffic scenes. IEEE Intell. Veh. Symp. (IV) 2016, 1141–1148 (2016). https://doi.org/10.1109/IVS.2016.7535533

    Article  Google Scholar 

  4. Lefevre, S., Laugier, C., Ibanez-Guzman, J.: Intention-aware risk estimation for general traffic situations, and application to intersection safety. Inria research report. RR-8379 (2013)

    Google Scholar 

  5. Villagra, J., Artuñedo, A., Trentin, V., Godoy, J.: Interaction-aware risk assessment: focus on the lateral intention, pp. 1–6 (2020). https://doi.org/10.1109/CAVS51000.2020.9334597

  6. Althoff, M., Magdici, S.: Set-based prediction of traffic participants on arbitrary road networks. IEEE Trans. Intell. Veh. 1(2), 187–202 (2016). https://doi.org/10.1109/TIV.2016.2622920

    Article  Google Scholar 

  7. Althoff, M.: Reachability analysis and its application to the safety assessment of autonomous cars (2010)

    Google Scholar 

  8. Zechel, P., Streiter, R., Bogenberger, K., Göhner, U.: Over-approximation of the driver behavior as occupancy prediction. In: 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 735–742 (2019). https://doi.org/10.1109/ISKE47853.2019.9170398

  9. Koschi, M., Althoff, M.: SPOT: a tool for set-based prediction of traffic participants. IEEE Intell. Veh. Symp. (IV) 2017, 1686–1693 (2017). https://doi.org/10.1109/IVS.2017.7995951

    Article  Google Scholar 

  10. Schulz, J., Hubmann, C., Löchner, J., Burschka, D.: Interaction-aware probabilistic behavior prediction in urban environments (2018)

    Google Scholar 

  11. Koschi, M., Althoff, M.: Interaction-aware occupancy prediction of road vehicles, pp. 1–8 (2017). https://doi.org/10.1109/ITSC.2017.8317852

  12. Trentin, V., Artuñedo, A., Godoy, J., Villagra, J.: Interaction-aware intention estimation at roundabouts. IEEE Access 9, 123088–123102 (2021). https://doi.org/10.1109/ACCESS.2021.3109350

    Article  Google Scholar 

  13. Bender, P., Ziegler, J., Stiller, C.: Lanelets: efficient map representation for autonomous driving. IEEE Intell. Veh. Symp. Proc. 2014, 420–425 (2014). https://doi.org/10.1109/IVS.2014.6856487

    Article  Google Scholar 

  14. Godoy, J., Jiménez, V., Artuñedo, A., Villagra, J.: A grid-based framework for collective perception in autonomous vehicles. Sensors 21(3), 744 (2021)

    Article  Google Scholar 

  15. Vechione, M., Balal, E., Cheu, R.: Comparisons of mandatory and discretionary lane changing behavior on freeways. Int. J. Transp. Sci. Technol. 7(2), 124–136 (2018). https://doi.org/10.1016/j.ijtst.2018.02.002

    Article  Google Scholar 

  16. Toledo, T., Koutsopoulos, H., Ben-Akiva, M.: Modeling integrated lane-changing behavior. Transp. Res. Rec. 1857(1), 30–38 (2003). https://doi.org/10.3141/1857-04

    Article  Google Scholar 

  17. Althoff, M.: An Introduction to CORA 2015 (2015). https://doi.org/10.29007/zbkv

  18. Mathew, T.V.: Lane changing models (2019). https://www.civil.iitb.ac.in/tvm/nptel/534_LaneChange/web/web.html. Accessed 19 Nov 2020

  19. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following models. Transp. Res. Rec. 1999, 86–94 (2007). https://doi.org/10.3141/1999-10

    Article  Google Scholar 

  20. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000). https://doi.org/10.1103/PhysRevE.62.1805

    Article  MATH  Google Scholar 

  21. Toledo, T., Choudhury, C., Ben-Akiva, M.: Lane-changing model with explicit target lane choice. Transp. Res. Rec. 1934(1), 157–165 (2005). https://doi.org/10.3141/1934-17

    Article  Google Scholar 

  22. AVSimulation: SCANeR studio User Manual (2019)

    Google Scholar 

  23. Moers, T., Vater, L., Krajewski, R., Bock, J., Zlocki, A., Eckstein, L.: The exiD dataset: a real-world trajectory dataset of highly interactive highway scenarios in germany. In: 2022 IEEE Intell. Veh. Symp. (IV), 958–964 (2022). https://doi.org/10.1109/IV51971.2022.9827305

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Trentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trentin, V., Artuñedo, A., Godoy, J., Villagra, J. (2022). Interaction-Aware Motion Prediction at Highways: A Comparison of Three Lane Changing Models. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021 2021. Communications in Computer and Information Science, vol 1612. Springer, Cham. https://doi.org/10.1007/978-3-031-17098-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17098-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17097-3

  • Online ISBN: 978-3-031-17098-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics