Skip to main content

Solving Complex Intersection Management Problems Using Bi-level MINLPs and Piecewise Linearization Techniques

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (VEHITS 2021, SMARTGREENS 2021)

Abstract

We investigate a complex Intersection Management Problem (IMP) for automated vehicles and introduce a method for the automated coordination of vehicles with the aim to minimize total clearance time for the intersection. The method is capable of handling multiple vehicles (per lane or distributed over several lanes), multiple lanes, variable arrival times and velocities, and multiple turn options in non-symmetric intersection scenarios. In order to optimally coordinate the vehicles we employ a bi-level optimization formulation coupling a scheduling problem at the upper level with an optimal control problem at the lower level. The latter takes into account the dynamics of the vehicles and the former aims to find an optimal sequence of arrivals at the intersection. Collision avoidance on the complete driving paths, i.e., at, before and after the intersection, is ensured by the problem formulation. In order to solve the resulting mixed-integer nonlinear bi-level optimization problem we develop suitable piecewise linearization techniques for the value function of the optimal control problems which eventually yields a large-scale mixed-integer linear problem. Numerical examples show the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmane, M., et al.: Modeling and controlling an isolated urban intersection based on cooperative vehicles. Transp. Res. Part C Emerg. Technol. 28, 44–62 (2013)

    Article  Google Scholar 

  2. Britzelmeier, A., Dreves, A.: A decomposition algorithm for Nash equilibria in intersection management. Optimization 70(11), 2441–2478 (2020). https://doi.org/10.1080/02331934.2020.1786088

    Article  MathSciNet  MATH  Google Scholar 

  3. Burlacu, R.: Adaptive mixed-integer refinements for solving nonlinear problems with discrete decisions. doctoralthesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2020)

    Google Scholar 

  4. Burlacu, R., Geißler, B., Schewe, L.: Solving mixed-integer nonlinear programmes using adaptively refined mixed-integer linear programmes. Optim. Methods Softw. 35(1), 37–64 (2020). https://doi.org/10.1080/10556788.2018.1556661

    Article  MathSciNet  MATH  Google Scholar 

  5. Dreves, A., Gerdts, M.: A generalized NASH equilibrium approach for optimal control problems of autonomous cars. Optimal Control Appl. Methods 39(1), 326–342 (2018). https://doi.org/10.1002/oca.2348

    Article  MathSciNet  MATH  Google Scholar 

  6. Exler, O., Lehmann, T., Schittkowski, K.: A comparative study of SQP-type algorithms for nonlinear and nonconvex mixed-integer optimization. Math. Program. Comput. 4(4), 383–412 (2012). https://doi.org/10.1007/s12532-012-0045-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Fayazi, S.A., Vahidi, A.: Mixed-integer linear programming for optimal scheduling of autonomous vehicle intersection crossing. IEEE Trans. Intell. Veh. 3(3), 287–299 (2018). https://doi.org/10.1109/TIV.2018.2843163

    Article  Google Scholar 

  8. Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 287–314. Springer, New York, NY (2012). https://doi.org/10.1007/978-1-4614-1927-3_10

    Chapter  Google Scholar 

  9. Gerdts, M., Rogovs, S., Valenti, G.: A piecewise linearization algorithm for solving MINLP in intersection management. In: Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, pp. 438–445. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010437104380445

  10. Gurobi Optimization, L.: Gurobi optimizer reference manual (2020). http://www.gurobi.com

  11. Hult, R., Zanon, M., Gras, S., Falcone, P.: An MIQP-based heuristic for optimal coordination of vehicles at intersections. In: 2018 IEEE Conference on Decision and Control (CDC). IEEE (2018). https://doi.org/10.1109/CDC.2018.8618945

  12. Hult, R., Zanon, M., Frison, G., Gros, S., Falcone, P.: Experimental validation of a semi-distributed sequential quadratic programming method for optimal coordination of automated vehicles at intersections. Optimal Control Appl. Methods 41(4), 1068–1096 (2020). https://doi.org/10.1002/oca.2592

    Article  MathSciNet  MATH  Google Scholar 

  13. Hult, R., Zanon, M., Gros, S., Falcone, P.: Optimal coordination of automated vehicles at intersections with turns. In: 2019 18th European Control Conference (ECC). IEEE (2019). https://doi.org/10.23919/ECC.2019.8795770

  14. Khayatian, M., et al.: A survey on intersection management of connected autonomous vehicles. ACM Trans. Cyber-Phys. Syst. 4(4), 1–27 (2020). https://doi.org/10.1145/3407903

    Article  Google Scholar 

  15. Kloock, M., Scheffe, P., Marquardt, S., Maczijewski, J., Alrifaee, B., Kowalewski, S.: Distributed model predictive intersection control of multiple vehicles, pp. 1735–1740 (2019). https://doi.org/10.1109/ITSC.2019.8917117

  16. Malikopoulos, A.A., Cassandras, C.G., Zhang, Y.J.: A decentralized energy-optimal control framework for connected automated vehicles at signal-free intersections. Automatica 93, 244–256 (2018). https://doi.org/10.1016/j.automatica.2018.03.056

    Article  MathSciNet  MATH  Google Scholar 

  17. Mohamad Nor, M.H., Namerikawa, T.: Optimal coordination and control of connected and automated vehicles at intersections via mixed integer linear programming. SICE J. Control Meas. Syst. Integr. 12(6), 215–222 (2019). https://doi.org/10.9746/jcmsi.12.215

    Article  Google Scholar 

  18. Namazi, E., Li, J., Lu, C.: Intelligent intersection management systems considering autonomous vehicles: a systematic literature review. IEEE Access 7, 91946–91965 (2019). https://doi.org/10.1109/ACCESS.2019.2927412

    Article  Google Scholar 

  19. Winston, W.L., Goldberg, J.B.: Operations Research: Applications and Algorithms. Thomson/Brooks/Cole, Belmont, CA (2004)

    Google Scholar 

  20. Zhong, Z., Nejad, M., Lee, E.: Autonomous and semiautonomous intersection management: a survey. IEEE Intell. Transp. Syst. Mag. 13(2), 53–70 (2021). https://doi.org/10.1109/MITS.2020.3014074

    Article  Google Scholar 

Download references

Acknowledgement

This research is funded by dtec.bw – Digitalization and Technology Research Center of the Bundeswehr [projects MissionLab, MORE, EMERGENCY-VRD] and the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, Award No. FA8655-20-1-7026. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Air Force Office of Scientific Research, Air Force Materiel Command, USAF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergejs Rogovs .

Editor information

Editors and Affiliations

A Quantities, Variables, and Conflict Matrix

A Quantities, Variables, and Conflict Matrix

Conflict matrix for the 10-lane intersection problem:

$$ C = \left[ \begin{array}{ccccccccccc} 4&{}3&{}3&{}0&{}2&{}0&{}0&{}0&{}0&{}0\\ 3&{}4&{}3&{}0&{}1&{}2&{}0&{}0&{}0&{}0\\ 3&{}3&{}4&{}0&{}1&{}1&{}2&{}0&{}0&{}0\\ 0&{}0&{}0&{}4&{}3&{}3&{}0&{}2&{}1&{}0\\ 2&{}1&{}1&{}3&{}4&{}3&{}0&{}0&{}1&{}1\\ 0&{}2&{}1&{}3&{}3&{}4&{}0&{}0&{}1&{}1\\ 0&{}0&{}2&{}0&{}0&{}0&{}4&{}3&{}1&{}1\\ 0&{}0&{}0&{}2&{}0&{}0&{}3&{}4&{}0&{}0\\ 0&{}0&{}0&{}1&{}1&{}1&{}1&{}0&{}4&{}0\\ 0&{}0&{}0&{}0&{}1&{}1&{}1&{}0&{}0&{}4 \end{array}\right] $$
Table 1. Quantities and variables introduced in this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerdts, M., Rogovs, S., Valenti, G. (2022). Solving Complex Intersection Management Problems Using Bi-level MINLPs and Piecewise Linearization Techniques. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021 2021. Communications in Computer and Information Science, vol 1612. Springer, Cham. https://doi.org/10.1007/978-3-031-17098-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17098-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17097-3

  • Online ISBN: 978-3-031-17098-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics