Skip to main content

Improving Error Detection in Deep Learning Based Radiotherapy Autocontouring Using Bayesian Uncertainty

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13563))

  • 498 Accesses

Abstract

Bayesian Neural Nets (BNN) are increasingly used for robust organ auto-contouring. Uncertainty heatmaps extracted from BNNs have been shown to correspond to inaccurate regions. To help speed up the mandatory quality assessment (QA) of contours in radiotherapy, these heatmaps could be used as stimuli to direct visual attention of clinicians to potential inaccuracies. In practice, this is non-trivial to achieve since many accurate regions also exhibit uncertainty. To influence the output uncertainty of a BNN, we propose a modified accuracy-versus-uncertainty (AvU) metric as an additional objective during model training that penalizes both accurate regions exhibiting uncertainty as well as inaccurate regions exhibiting certainty. For evaluation, we use an uncertainty-ROC curve that can help differentiate between Bayesian models by comparing the probability of uncertainty in inaccurate versus accurate regions. We train and evaluate a FlipOut BNN model on the MICCAI2015 Head and Neck Segmentation challenge dataset and on the DeepMind-TCIA dataset, and observed an increase in the AUC of uncertainty-ROC curves by 5.6% and 5.9%, respectively, when using the AvU objective. The AvU objective primarily reduced false positives regions (uncertain and accurate), drawing less visual attention to these regions, thereby potentially improving the speed of error detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alex Kendall, V.B., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In: Proceedings of the British Machine Vision Conference (BMVC). BMVA Press (2017)

    Google Scholar 

  2. Arega, T.W., Bricq, S., Meriaudeau, F.: Leveraging uncertainty estimates to improve segmentation performance in cardiac MR. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 24–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_3

    Chapter  Google Scholar 

  3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning. PMLR (2015)

    Google Scholar 

  4. Bragman, F.J.S., et al.: Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_1

    Chapter  Google Scholar 

  5. Brouwer, C.L., et al.: 3D variation in delineation of head and neck organs at risk. Radiat. Oncol. 7(1), 1–10 (2012)

    Article  Google Scholar 

  6. Camarasa, R., et al.: Quantitative comparison of Monte-Carlo dropout uncertainty measures for multi-class segmentation. In: Sudre, C.H., et al. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 32–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_4

    Chapter  Google Scholar 

  7. Chen, Z., et al.: A novel hybrid convolutional neural network for accurate organ segmentation in 3D head and neck CT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 569–578. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_54

    Chapter  Google Scholar 

  8. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  10. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  11. Islam, M., Glocker, B.: Spatially varying label smoothing: capturing uncertainty from expert annotations. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 677–688. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_52

    Chapter  Google Scholar 

  12. Iwamoto, S., Raytchev, B., Tamaki, T., Kaneda, K.: Improving the reliability of semantic segmentation of medical images by uncertainty modeling with Bayesian deep networks and curriculum learning. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 34–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_4

    Chapter  Google Scholar 

  13. Krishnan, R., Tickoo, O.: Improving model calibration with accuracy versus uncertainty optimization. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  14. Laves, M.H., Ihler, S., Kortmann, K.P., Ortmaier, T.: Well-calibrated model uncertainty with temperature scaling for dropout variational inference. arXiv preprint arXiv:1909.13550 (2019)

  15. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39, 3868–3878 (2020)

    Google Scholar 

  16. Mobiny, A., Yuan, P., Moulik, S.K., Garg, N., Wu, C.C., Van Nguyen, H.: DropConnect is effective in modeling uncertainty of Bayesian deep networks. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  17. Mody, P.P., de Plaza, N.C., Hildebrandt, K., van Egmond, R., de Ridder, H., Staring, M.: Comparing Bayesian models for organ contouring in head and neck radiotherapy. In: Medical Imaging 2022: Image Processing. International Society for Optics and Photonics, SPIE (2022)

    Google Scholar 

  18. Monteiro, M., et al.: Stochastic segmentation networks: modelling spatially correlated aleatoric uncertainty. Adv. Neural Inf. Process. Syst. 33, 12756–12767 (2020)

    Google Scholar 

  19. Mukhoti, J., Gal, Y.: Evaluating Bayesian deep learning methods for semantic segmentation. CoRR arXiv:abs/1811.12709 (2018)

  20. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med. Image Anal. 59, 101557 (2020)

    Article  Google Scholar 

  21. Nikolov, S., et al.: Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study. J. Med. Internet Res. 23(7), e26151 (2021)

    Article  Google Scholar 

  22. Raudaschl, P.F., et al.: Evaluation of segmentation methods on head and neck CT: auto-segmentation challenge 2015. Med. Phys. 44(5), 2020–2036 (2017)

    Article  Google Scholar 

  23. Sander, J., de Vos, B.D., IÅ¡gum, I.: Automatic segmentation with detection of local segmentation failures in cardiac MRI. Sci. Rep. 10, 21769 (2020)

    Article  Google Scholar 

  24. Sander, J., de Vos, B.D., Wolterink, J.M., Išgum, I.: Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI. In: Medical Imaging 2019: Image Processing, vol. 10949, pp. 324–330. SPIE (2019)

    Google Scholar 

  25. Soberanis-Mukul, R.D., Navab, N., Albarqouni, S.: Uncertainty-based graph convolutional networks for organ segmentation refinement. In: Medical Imaging with Deep Learning, pp. 755–769. PMLR (2020)

    Google Scholar 

  26. Van Dijk, L.V., et al.: Improving automatic delineation for head and neck organs at risk by deep learning contouring. Radiother. Oncol. 142, 115–123 (2020)

    Article  Google Scholar 

  27. van der Veen, J., Gulyban, A., Nuyts, S.: Interobserver variability in delineation of target volumes in head and neck cancer. Radiotherapy Oncol. 137, 9–15 (2019)

    Article  Google Scholar 

  28. Wen, Y., Vicol, P., Ba, J., Tran, D., Grosse, R.: Flipout: efficient pseudo- independent weight perturbations on mini-batches. In: Proceedings of the 6th International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Acknowledgements

The research for this work was funded by Varian, a Siemens Healthineers Company, through the HollandPTC-Varian Consortium (grant id 2019022) and partly financed by the Surcharge for Top Consortia for Knowledge and Innovation (TKIs) from the Ministry of Economic Affairs and Climate, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prerak Mody .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 143 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mody, P., Chaves-de-Plaza, N.F., Hildebrandt, K., Staring, M. (2022). Improving Error Detection in Deep Learning Based Radiotherapy Autocontouring Using Bayesian Uncertainty. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2022. Lecture Notes in Computer Science, vol 13563. Springer, Cham. https://doi.org/10.1007/978-3-031-16749-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16749-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16748-5

  • Online ISBN: 978-3-031-16749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics