Skip to main content

Intra-operative OCT (iOCT) Super Resolution: A Two-Stage Methodology Leveraging High Quality Pre-operative OCT Scans

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2022)

Abstract

Regenerative therapies have recently shown potential in restoring sight lost due to degenerative diseases. Their efficacy requires precise intra-retinal delivery, which can be achieved by robotic systems accompanied by high quality visualization of retinal layers. Intra-operative Optical Coherence Tomography (iOCT) captures cross-sectional retinal images in real-time but with image quality that is inadequate for intra-retinal therapy delivery. This paper proposes a two-stage super-resolution methodology that enhances the image quality of the low resolution (LR) iOCT images leveraging information from pre-operatively acquired high-resolution (HR) OCT (preOCT) images. First, we learn the degradation process from HR to LR domain through CycleGAN and use it to generate pseudo iOCT (LR) images from the HR preOCT ones. Then, we train a Pix2Pix model on the pairs of pseudo iOCT and preOCT to learn the super-resolution mapping. Quantitative analysis using both full-reference and no-reference image quality metrics demonstrates that our approach clearly outperforms the learning-based state-of-the art techniques with statistical significance. Achieving iOCT image quality comparable to preOCT quality can help this medical imaging modality be established in vitreoretinal surgery, without requiring expensive hardware-related system updates.

Supported by King’s Centre for Doctoral Studies - Centre for Doctoral Training in Surgical & Interventional Engineering and funded in whole, or in part, by the Wellcome Trust [WT203148/Z/16/Z]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We interchange “super resolution” and “quality enhancement” as usual in the literature.

  2. 2.

    https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

References

  1. Apostolopoulos, S., et al.: Automatically enhanced oct scans of the retina: a proof of concept study. Sci. Rep. 10(1), 1–8 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bernardes, R., Maduro, C., Serranho, P., Araújo, A., Barbeiro, S., Cunha-Vaz, J.: Improved adaptive complex diffusion despeckling filter. Opt. Express 18(23), 24048–24059 (2010)

    Article  Google Scholar 

  3. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. arXiv preprint arXiv:1801.01401 (2018)

  4. Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a GAN to learn how to do image degradation first. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 185–200 (2018)

    Google Scholar 

  5. Cornelissen, P., Ourak, M., Borghesan, G., Reynaerts, D., Vander Poorten, E.: Towards real-time estimation of a spherical eye model based on a single fiber OCT. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp. 666–672. IEEE (2019)

    Google Scholar 

  6. da Cruz, L., et al.: Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36(4), 328 (2018)

    Article  Google Scholar 

  7. Devalla, S.K., et al.: A deep learning approach to denoise optical coherence tomography images of the optic nerve head. Sci. Rep. 9(1), 1–13 (2019)

    Article  Google Scholar 

  8. Fang, L., Li, S., Cunefare, D., Farsiu, S.: Segmentation based sparse reconstruction of optical coherence tomography images. IEEE Trans. Med. Imaging 36(2), 407–421 (2016)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  10. Halupka, K.J., et al.: Retinal optical coherence tomography image enhancement via deep learning. Biomed. Opt. Express 9(12), 6205–6221 (2018)

    Article  Google Scholar 

  11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  12. Immerkaer, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302 (1996)

    Article  Google Scholar 

  13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  15. de Jong, E.K., Geerlings, M.J., den Hollander, A.I.: Age-related macular degeneration. In: Genetics and Genomics of Eye Disease, pp. 155–180 (2020)

    Google Scholar 

  16. Komninos, C., et al.: Intra-operative OCT (iOCT) image quality enhancement: a super-resolution approach using high quality iOCT 3D scans. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2021. LNCS, vol. 12970, pp. 21–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87000-3_3

    Chapter  Google Scholar 

  17. Komninos, C., et al.: Surgical biomicroscopy-guided intra-operative optical coherence tomography (iOCT) image super-resolution. Int. J. Comput. Assist. Radiol. Surg. 17(5), 877–883 (2022). https://doi.org/10.1007/s11548-022-02603-5

    Article  Google Scholar 

  18. Li, M., Idoughi, R., Choudhury, B., Heidrich, W.: Statistical model for OCT image denoising. Biomed. Opt. Express 8(9), 3903–3917 (2017)

    Article  Google Scholar 

  19. Matkovic, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W.: Global contrast factor-a new approach to image contrast. Comput. Aesthetics 2005(159–168), 1 (2005)

    Google Scholar 

  20. Nazari, H., et al.: Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog. Retin. Eye Res. 48, 1–39 (2015)

    Article  Google Scholar 

  21. Ozcan, A., Bilenca, A., Desjardins, A.E., Bouma, B.E., Tearney, G.J.: Speckle reduction in optical coherence tomography images using digital filtering. JOSA A 24(7), 1901–1910 (2007)

    Article  Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  23. Sander, B., Larsen, M., Thrane, L., Hougaard, J.L., Jørgensen, T.M.: Enhanced optical coherence tomography imaging by multiple scan averaging. Br. J. Ophthalmol. 89(2), 207–212 (2005)

    Article  Google Scholar 

  24. Viehland, C., et al.: Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. Biomed. Opt. Express 7(5), 1815 (2016)

    Article  Google Scholar 

  25. Xu, J., Gong, E., Pauly, J., Zaharchuk, G.: 200x low-dose PET reconstruction using deep learning. arXiv preprint arXiv:1712.04119 (2017)

  26. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  27. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Komninos .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 16790 KB)

Supplementary material 2 (mp4 16741 KB)

Supplementary material 3 (mp4 4555 KB)

Supplementary material 4 (mp4 4763 KB)

Supplementary material 5 (mp4 14856 KB)

Supplementary material 6 (mp4 15028 KB)

Supplementary material 7 (pdf 13 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Komninos, C. et al. (2022). Intra-operative OCT (iOCT) Super Resolution: A Two-Stage Methodology Leveraging High Quality Pre-operative OCT Scans. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2022. Lecture Notes in Computer Science, vol 13576. Springer, Cham. https://doi.org/10.1007/978-3-031-16525-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16525-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16524-5

  • Online ISBN: 978-3-031-16525-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics