Skip to main content

Localizing Anatomical Landmarks in Ocular Images Using Zoom-In Attentive Networks

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2022)

Abstract

Localizing anatomical landmarks are important tasks in medical image analysis. However, the landmarks to be localized often lack prominent visual features. Their locations are elusive and easily confused with the background, and thus precise localization highly depends on the context formed by their surrounding areas. In addition, the required precision is usually higher than segmentation and object detection tasks. Therefore, localization has its unique challenges different from segmentation or detection. In this paper, we propose a zoom-in attentive network (ZIAN) for anatomical landmark localization in ocular images. First, a coarse-to-fine, or “zoom-in” strategy is utilized to learn the contextualized features in different scales. Then, an attentive fusion module is adopted to aggregate multi-scale features, which consists of 1) a co-attention network with a multiple regions-of-interest (ROIs) scheme that learns complementary features from the multiple ROIs, 2) an attention-based fusion module which integrates the multi-ROIs features and non-ROI features. We evaluated ZIAN on two open challenge tasks, i.e., the fovea localization in fundus images and scleral spur localization in AS-OCT images. Experiments show that ZIAN achieves promising performances and outperforms state-of-the-art localization methods. The source code and trained models of ZIAN are available at https://github.com/leixiaofeng-astar/OMIA9-ZIAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://refuge.grand-challenge.org.

  2. 2.

    https://age.grand-challenge.org.

References

  1. Early Treatment Diabetic Retinopathy Study Research Group: Early photocoagulation for diabetic retinopathy. Ophthalmology 98, 766–785 (1991)

    Article  Google Scholar 

  2. Estudillo-Ayala, M.D.J., Aguirre-Ramos, H., Avina-Cervantes, J.G., Cruz-Duarte, J.M., Cruz-Aceves, I., Ruiz-Pinales, J.: Algorithmic analysis of vesselness and blobness for detecting retinopathies based on fractional Gaussian filters. Mathematics 8(5), 744 (2020)

    Article  Google Scholar 

  3. Meindert, N., Michael, D.A., Bram, V.G.: Fast detection of the optic disc and fovea in color fundus photographs. Med. Image Anal. 13(6), 859–870 (2009)

    Article  Google Scholar 

  4. Asim, K.M., Basit, A., Jalil, A.: Detection and localization of fovea in human retinal fundus images. In: 2012 International Conference on Emerging Technologies (ICET) (2012)

    Google Scholar 

  5. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Article  Google Scholar 

  6. Sidey, G., Jenni, A.M.: Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 64 (2019)

    Article  Google Scholar 

  7. Zhao, Z.-Q., Zheng, P., Xu, S.-T., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

  8. Chen, C., Wang, B., Lu, C.X., Trigoni, N., Markham, A.: A survey on deep learning for localization and mapping: towards the age of spatial machine intelligence. arXiv preprint arXiv:2006.12567 (2020)

  9. Fu, H., et al.: Age challenge: angle closure glaucoma evaluation in anterior segment optical coherence tomography. Med. Image Anal. 66, 101798 (2020)

    Article  Google Scholar 

  10. Noothout, J.M.H., et al.: Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans. Med. Imaging 39, 4011–4022 (2020)

    Article  Google Scholar 

  11. Huang, W., Yang, C., Hou, T.: Spine landmark localization with combining of heatmap regression and direct coordinate regression. arXiv preprint arXiv:2007.05355 (2020)

  12. Tao, R., Zheng, G.: Spine-transformers: vertebra detection and localization in arbitrary field-of-view spine CT with transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 93–103. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_9

    Chapter  Google Scholar 

  13. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 03 (2019)

    Article  Google Scholar 

  14. Bhalodia, R., et al.: Improving pneumonia localization via cross-attention on medical images and reports. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 571–581. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_53

    Chapter  Google Scholar 

  15. Kang, J., Oh, K., Oh, I.S.: Accurate landmark localization for medical images using perturbations. Appl. Sci. 11(21), 10277 (2021)

    Article  Google Scholar 

  16. Liu, P., et al.: Reproducibility of deep learning based scleral spur localisation and anterior chamber angle measurements from anterior segment optical coherence tomography images. Br. J. Ophthalmol. (2022)

    Google Scholar 

  17. Zhu, H., Yao, Q., Xiao, L., Zhou, S.K.: You only learn once: universal anatomical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 85–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_9

    Chapter  Google Scholar 

  18. Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., Porikli, F.: See more, know more: unsupervised video object segmentation with co-attention Siamese networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  19. Li, S., Sui, X., Luo, X., Xu, X., Yong, L., Goh, R.S.M.: Medical image segmentation using squeeze-and-expansion transformers. In: The 30th International Joint Conference on Artificial Intelligence (IJCAI) (2021)

    Google Scholar 

  20. Cina, A., et al.: 2-step deep learning model for landmarks localization in spine radiographs. Sci. Rep. 11(1), 1–12 (2021)

    Article  MathSciNet  Google Scholar 

  21. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. arXiv preprint arXiv:1606.00061 (2016)

  22. Nguyen, D.K., Okatani, T.: Improved fusion of visual and language representations by dense symmetric co-attention for visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6087–6096 (2018)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 6000–6010 (2017)

    Google Scholar 

  24. Voita, E., Talbot, D., Moiseev, F., Sennrich, R., Titov, I.: Analyzing multi-head self-attention: specialized heads do the heavy lifting, the rest can be pruned. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

  25. Cordonnier, J.B., Loukas, A., Jaggi, M.: Multi-head attention: collaborate instead of concatenate. arXiv preprint arXiv:2006.16362 (2020)

  26. Xie, R., et al.: End-to-end fovea localisation in colour fundus images with a hierarchical deep regression network. IEEE Trans. Med. Imaging 40(1), 116–128 (2021)

    Article  Google Scholar 

  27. Ke, S., Bin, X., Dong, L., Jingdong, W.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5693–5703 (2019)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, vol. 97, pp. 6105–6114. Proceedings of Machine Learning Research, PMLR 2019 (2019)

    Google Scholar 

  30. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  32. Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funds (Grant Number: A20H4b0141), and its RIE2020 Health and Biomedical Sciences (HBMS) Industry Alignment Fund Pre-Positioning (IAF-PP, Grant Number: H20c6a0031). Xinxing Xu is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohua Li or Xinxing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, X. et al. (2022). Localizing Anatomical Landmarks in Ocular Images Using Zoom-In Attentive Networks. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2022. Lecture Notes in Computer Science, vol 13576. Springer, Cham. https://doi.org/10.1007/978-3-031-16525-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16525-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16524-5

  • Online ISBN: 978-3-031-16525-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics