Skip to main content

An Algorithmic Framework for Locally Constrained Homomorphisms

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Abstract

A homomorphism \(\phi \) from a guest graph G to a host graph H is locally bijective, injective or surjective if for every \(u\in V(G)\), the restriction of \(\phi \) to the neighbourhood of u is bijective, injective or surjective, respectively. The corresponding decision problems, LBHom, LIHom and LSHom, are well studied both on general graphs and on special graph classes. We prove a number of new \(\textsf{FPT}\), \(\textsf{W}\)[1]-hard and para-\(\textsf{NP}\)-complete results by considering a hierarchy of parameters of the guest graph G. For our \(\textsf{FPT}\) results, we do this through the development of a new algorithmic framework that involves a general ILP model. To illustrate the applicability of the new framework, we also use it to prove \(\textsf{FPT}\) results for the Role Assignment problem, which originates from social network theory and is closely related to locally surjective homomorphisms.

The second and fourth authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC, project EP/V00252X/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abello, J., Fellows, M.R., Stillwell, J.: On the complexity and combinatorics of covering finite complexes. Australas. J. Comb. 4, 103–112 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors (extended abstract). Proc. STOC 1980, 82–93 (1980)

    Google Scholar 

  3. Angluin, D., Gardiner, A.: Finite common coverings of pairs of regular graphs. J. Comb. Theory Ser. B 30, 184–187 (1981)

    Article  MathSciNet  Google Scholar 

  4. Biggs, N.J.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974)

    Book  Google Scholar 

  5. Biggs, N.J.: Constructing \(5\)-arc transitive cubic graphs. J. Lond. Math. Soc. II(26), 193–200 (1982)

    Article  MathSciNet  Google Scholar 

  6. Bílka, O., Lidický, B., Tesař, M.: Locally injective homomorphism to the simple weight graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 471–482. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-5_46

    Chapter  Google Scholar 

  7. Bodlaender, H.L.: The classification of coverings of processor networks. J. Parallel Distrib. Comput. 6, 166–182 (1989)

    Article  Google Scholar 

  8. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18, 238–255 (1995)

    Article  MathSciNet  Google Scholar 

  9. Bok, J., Fiala, J., Hlinený, P., Jedlicková, N., Kratochvíl, J.: Computational complexity of covering multigraphs with semi-edges: small cases. In: Proceedings of MFCS 2021. LIPIcs, vol. 202, pp. 21:1–21:15 (2021)

    Google Scholar 

  10. Chalopin, J.: Local computations on closed unlabelled edges: the election problem and the naming problem. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 82–91. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4_11

    Chapter  Google Scholar 

  11. Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case of cellular edge local computations. Fund. Inform. 74, 85–114 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Chalopin, J., Paulusma, D.: Graph labelings derived from models in distributed computing: a complete complexity classification. Networks 58, 207–231 (2011)

    Article  MathSciNet  Google Scholar 

  13. Chalopin, J., Paulusma, D.: Packing bipartite graphs with covers of complete bipartite graphs. Discret. Appl. Math. 168, 40–50 (2014)

    Article  MathSciNet  Google Scholar 

  14. Chaplick, S., Fiala, J., van ’t Hof, P., Paulusma, D., Tesař, M.: Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree. Theor. Comput. Sci. 590, 86–95 (2015)

    Google Scholar 

  15. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theoret. Comput. Sci. 239, 211–229 (2000)

    Article  MathSciNet  Google Scholar 

  16. Dourado, M.C.: Computing role assignments of split graphs. Theoret. Comput. Sci. 635, 74–84 (2016)

    Article  MathSciNet  Google Scholar 

  17. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theoret. Comput. Sci. 141, 109–131 (1995)

    Article  MathSciNet  Google Scholar 

  18. Drange, P.G., Dregi, M.S., van ’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76, 1181–1202 (2016)

    Google Scholar 

  19. Dvorák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear programs with a small number of global variables and constraints. Proc. IJCAI 2017, 607–613 (2017)

    MATH  Google Scholar 

  20. Everett, M.G., Borgatti, S.P.: Role colouring a graph. Math. Soc. Sci. 21, 183–188 (1991)

    Article  MathSciNet  Google Scholar 

  21. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_28

    Chapter  Google Scholar 

  22. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-labelings. Discret. Appl. Math. 113, 59–72 (2001)

    Article  Google Scholar 

  23. Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discuss. Math. Graph Theory 22, 89–99 (2002)

    Article  MathSciNet  Google Scholar 

  24. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure, complexity, and applications. Comput. Sci. Rev. 2, 97–111 (2008)

    Article  Google Scholar 

  25. Fiala, J., Kratochvíl, J., Pór, A.: On the computational complexity of partial covers of theta graphs. Discret. Appl. Math. 156, 1143–1149 (2008)

    Article  MathSciNet  Google Scholar 

  26. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoret. Comput. Sci. 349, 67–81 (2005)

    Article  MathSciNet  Google Scholar 

  27. Fiala, J., Paulusma, D.: Comparing universal covers in polynomial time. Theory Comput. Syst. 46, 620–635 (2010)

    Article  MathSciNet  Google Scholar 

  28. Fiala, J., Tesař, M.: Dichotomy of the H-quasi-cover problem. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 310–321. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0_27

    Chapter  Google Scholar 

  29. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  Google Scholar 

  30. Freuder, E.C.: Complexity of \(k\)-tree structured constraint satisfaction problems. Proc. AAAI 1990, 4–9 (1990)

    Google Scholar 

  31. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54, 1:1-1:24 (2007)

    Article  MathSciNet  Google Scholar 

  32. Heggernes, P., van ’t Hof, P., Paulusma, D.: Computing role assignments of proper interval graphs in polynomial time. J. Discret. Algorithms 14, 173–188 (2012)

    Google Scholar 

  33. Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Comb. Theory Ser. B 48, 92–110 (1990)

    Article  MathSciNet  Google Scholar 

  34. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  35. van ’t Hof, P., Paulusma, D., van Rooij, J.M.M.: Computing role assignments of chordal graphs. Theoret. Comput. Sci. 411, 3601–3613 (2010)

    Google Scholar 

  36. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  Google Scholar 

  37. Kratochvíl, J.: Regular codes in regular graphs are difficult. Discret. Math. 133, 191–205 (1994)

    Article  MathSciNet  Google Scholar 

  38. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J. Comb. Theory Ser. B 71, 1–16 (1997)

    Article  MathSciNet  Google Scholar 

  39. Kratochvíl, J., Proskurowski, A., Telle, J.A.: On the complexity of graph covering problems. Nordic J. Comput. 5, 173–195 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Kratochvíl, J., Telle, J.A., Tesař, M.: Computational complexity of covering three-vertex multigraphs. Theoret. Comput. Sci. 609, 104–117 (2016)

    Google Scholar 

  41. Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3_39

    Chapter  Google Scholar 

  42. Kronegger, M., Ordyniak, S., Pfandler, A.: Backdoors to planning. Artif. Intell. 269, 49–75 (2019)

    Article  MathSciNet  Google Scholar 

  43. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  44. Lidický, B., Tesař, M.: Complexity of locally injective homomorphism to the theta graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 326–336. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19222-7_33

    Chapter  Google Scholar 

  45. Massey, W.S.: Algebraic Topology: An Introduction. Harcourt, Brace and World (1967)

    Google Scholar 

  46. Nešetřil, J.: Homomorphisms of derivative graphs. Discret. Math. 1, 257–268 (1971)

    Google Scholar 

  47. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

  48. Okrasa, K., Rzążewski, P.: Subexponential algorithms for variants of the homomorphism problem in string graphs. J. Comput. Syst. Sci. 109, 126–144 (2020)

    Article  MathSciNet  Google Scholar 

  49. Pandey, S., Sahlot, V.: Role coloring bipartite graphs. CoRR abs/2102.01124 (2021)

    Google Scholar 

  50. Pekeč, A., Roberts, F.S.: The role assignment model nearly fits most social networks. Math. Soc. Sci. 41, 275–293 (2001)

    Article  MathSciNet  Google Scholar 

  51. Purcell, C., Rombach, M.P.: On the complexity of role colouring planar graphs, trees and cographs. J. Discret. Algorithms 35, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  52. Purcell, C., Rombach, M.P.: Role colouring graphs in hereditary classes. Theoret. Comput. Sci. 876, 12–24 (2021)

    Article  MathSciNet  Google Scholar 

  53. Roberts, F.S., Sheng, L.: How hard is it to determine if a graph has a \(2\)-role assignment? Networks 37, 67–73 (2001)

    Article  MathSciNet  Google Scholar 

  54. White, D.R., Reitz, K.P.: Graph and semigroup homomorphisms on networks of relations. Soc. Netw. 5, 193–235 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad K. Dabrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulteau, L., Dabrowski, K.K., Köhler, N., Ordyniak, S., Paulusma, D. (2022). An Algorithmic Framework for Locally Constrained Homomorphisms. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics