Skip to main content

Problems Hard for Treewidth but Easy for Stable Gonality

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Abstract

We show that some natural problems that are XNLP-hard (hence \(\textrm{W}[t]\)-hard for all t) when parameterized by pathwidth or treewidth, become FPT when parameterized by stable gonality, a novel graph parameter based on optimal maps from graphs to trees. The problems we consider are classical flow and orientation problems, such as Undirected Flow with Lower Bounds, Minimum Maximum Outdegree, and capacitated optimization problems such as Capacitated (Red-Blue) Dominating Set. Our hardness claims beat existing results. The FPT algorithms use a new parameter “treebreadth”, associated to a weighted tree partition, as well as DP and ILP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [23] it is required that \(\textrm{val}(f) \ge R\) rather than \(\textrm{val}(f) = R\), but the problems are of the same complexity, cf. [28].

  2. 2.

    In the full version [8], we in fact give a detailed, slightly different, algorithm for Capacitated Red-Blue Dominating Set and then deduce the result for Capacitated Dominating Set.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows – Theory, Algorithms and Applications. Prentice Hall (1993)

    Google Scholar 

  2. Alexandersson, P.: NP-complete variants of some classical graph problems. CoRR, abs/2001.04120 (2020). arXiv:2001.04120

  3. Baker, M.: Specialization of linear systems from curves to graphs. Algebra Number Theory 2(6), 613–653 (2008). https://doi.org/10.2140/ant.2008.2.613. With an appendix by Brian Conrad

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, M., Norine, S.: Harmonic morphisms and hyperelliptic graphs. Int. Math. Res. Not. IMRN 15, 2914–2955 (2009). https://doi.org/10.1093/imrn/rnp037

    Article  MathSciNet  MATH  Google Scholar 

  5. Bliem, B., Woltran, S.: Complexity of secure sets. Algorithmica 80(10), 2909–2940 (2017). https://doi.org/10.1007/s00453-017-0358-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Bliem, B., Woltran, S.: Defensive alliances in graphs of bounded treewidth. Discrete Appl. Math. 251, 334–339 (2018). https://doi.org/10.1016/j.dam.2018.04.001

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodewes, J.M., Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Recognizing hyperelliptic graphs in polynomial time. Theoret. Comput. Sci. 815, 121–146 (2020). https://doi.org/10.1016/j.tcs.2020.02.013

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Problems hard for treewidth but easy for stable gonality. CoRR, abs/2202.06838 (2022). arXiv:2202.06838

  9. Bodlaender, H.L., Groenland, C., Jacob, H.: On the parameterized complexity of computing tree-partitions. CoRR, abs/2206.11832 (2022). arXiv:2206.11832

  10. Bodlaender, H.L., Groenland, C., Jacob, H.: XNLP-completeness for parameterized problems on graphs with a linear structure. CoRR, abs/2201.13119 (2022). arXiv:2201.13119

  11. Bodlaender, H.L., Groenland, C., Nederlof, J., Swennenhuis, C.M.F.: Parameterized problems complete for nondeterministic FPT time and logarithmic space. In: Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pp. 193–204 (2021). https://doi.org/10.1109/FOCS52979.2021.00027

  12. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs of small treewidth. Inf. Comput. 167(2), 86–119 (2001). https://doi.org/10.1006/inco.2000.2958

  13. Cornelissen, G., Kato, F., Kool, J.: A combinatorial Li-Yau inequality and rational points on curves. Math. Ann. (10), 211–258 (2014). https://doi.org/10.1007/s00208-014-1067-x

  14. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. and Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  MATH  Google Scholar 

  15. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  16. van Dobben de Bruyn, J., Gijswijt, D.: Treewidth is a lower bound on graph gonality. Algebr. Comb. 3(4), 941–953 (2020). https://doi.org/10.5802/alco.124

  17. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_9

    Chapter  MATH  Google Scholar 

  18. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science, Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  19. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle. In: Proceedings 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp. 143–152. IEEE Computer Society (2010). https://doi.org/10.1109/FOCS.2010.21

  20. Elberfeld, M., Stockhusen, C., Tantau, T.: On the Space and Circuit Complexity of Parameterized Problems: classes and Completeness. Algorithmica 71(3), 661–701 (2014). https://doi.org/10.1007/s00453-014-9944-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: treewidth versus vertex cover. Theoret. Comput. Sci. 412(23), 2513–2523 (2011). https://doi.org/10.1016/j.tcs.2010.10.043

    Article  MathSciNet  MATH  Google Scholar 

  22. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 348–360. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_29

    Chapter  MATH  Google Scholar 

  23. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  24. Gijswijt, D., Smit, H., van der Wegen, M.: Computing graph gonality is hard. Discret. Appl. Math. 287, 134–149 (2020). https://doi.org/10.1016/j.dam.2020.08.013

    Article  MathSciNet  MATH  Google Scholar 

  25. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. Theoret. Comput. Sci. 918, 60–76 (2022). https://doi.org/10.1016/j.tcs.2022.03.021

    Article  MathSciNet  MATH  Google Scholar 

  26. Koerkamp, R.G., van der Wegen, M.: Stable gonality is computable. Discrete Math. Theor. Comput. Sci. 21(1), 14 (2019). https://doi.org/10.23638/DMTCS-21-1-10. Paper No. 10

  27. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2007). https://doi.org/10.1093/comjnl/bxm052

    Article  Google Scholar 

  28. Itai, A.: Two-commodity flow. J. ACM 25(4), 596–611 (1978). https://doi.org/10.1145/322092.322100

    Article  MathSciNet  MATH  Google Scholar 

  29. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013). https://doi.org/10.1016/j.jcss.2012.04.004

    Article  MathSciNet  MATH  Google Scholar 

  30. Seese, D.: Tree-partite graphs and the complexity of algorithms. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 412–421. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0028825

    Chapter  Google Scholar 

  31. Szeider, S.: Not so easy problems for tree decomposable graphs. In: Advances in Discrete Mathematics and Applications: Mysore, 2008. Ramanujan Mathematical Society Lecture Note Series, vol. 13, pp. 179–190. Ramanujan Mathematical Society, Mysore (2010). arXiv:1107.1177

  32. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theory Ser. B 110, 47–66 (2015). https://doi.org/10.1016/j.jctb.2014.07.003

  33. Wood, D.R.: On tree-partition-width. Eur. J. Combin. 30(5), 1245–1253 (2009). https://doi.org/10.1016/j.ejc.2008.11.010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Carla Groenland and Hugo Jacob for various discussions, and in particular for suggestions related to the capacitated dominating set problems, and the relations between tree cut-width, tree partition width, and stable tree-partition width.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans L. Bodlaender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodlaender, H.L., Cornelissen, G., van der Wegen, M. (2022). Problems Hard for Treewidth but Easy for Stable Gonality. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics