Skip to main content

Recognition of Linear and Star Variants of Leaf Powers is in P

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13453))

Included in the following conference series:

  • 481 Accesses

Abstract

A k-leaf power of a tree T is a graph G whose vertices are the leaves of T and whose edges connect pairs of leaves whose distance in T is at most k. A graph is a leaf power if it is a k-leaf power for some k. Over 20 years ago, Nishimura et al. [J. Algorithms, 2002] asked if recognition of leaf powers was in P. Recently, Lafond [SODA 2022] showed an XP algorithm when parameterized by k, while leaving the main question open. In this paper, we explore this question from the perspective of two alternative models of leaf powers, showing that both a linear and a star variant of leaf powers can be recognized in polynomial-time.

Omitted proofs and a conclusion can be found in the full version of this paper available on https://arxiv.org/abs/2105.12407.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discret. Appl. Math. 43(1), 13–26 (1993)

    Article  MathSciNet  Google Scholar 

  2. Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 479–491. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_42

    Chapter  Google Scholar 

  3. Brandstädt, A., Hundt, C., Mancini, F., Wagner, P.: Rooted directed path graphs are leaf powers. Discret. Math. 310(4), 897–910 (2010)

    Article  MathSciNet  Google Scholar 

  4. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Inf. Process. Lett. 98(4), 133–138 (2006)

    Article  MathSciNet  Google Scholar 

  5. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear-time recognition of 4-leaf powers. ACM Trans. Algorithms 5(1), 11:1-11:22 (2008). https://doi.org/10.1145/1435375.1435386

    Article  MathSciNet  MATH  Google Scholar 

  6. Calamoneri, T., Frangioni, A., Sinaimeri, B.: Pairwise compatibility graphs of caterpillars. Comput. J. 57(11), 1616–1623 (2014)

    Article  Google Scholar 

  7. Calamoneri, T., Sinaimeri, B.: Pairwise compatibility graphs: a survey. SIAM Rev. 58(3), 445–460 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chang, M.-S., Ko, M.-T.: The 3-Steiner root problem. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 109–120. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-7_11

    Chapter  Google Scholar 

  9. Davis, A., Gao, R., Navin, N.: Tumor evolution: Linear, branching, neutral or punctuated? Biochim. Biophys. Acta (BBA) - Rev. Cancer 1867(2), 151–161 (2017). https://doi.org/10.1016/j.bbcan.2017.01.003, evolutionary principles - heterogeneity in cancer?

  10. Diestel, R.: Graph Theory, 4th edn, Graduate Texts in Mathematics, vol. 173. Springer, London (2012)

    Google Scholar 

  11. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Extending the tractability border for closest leaf powers. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 397–408. Springer, Heidelberg (2005). https://doi.org/10.1007/11604686_35

    Chapter  Google Scholar 

  12. Ducoffe, G.: The 4-Steiner root problem. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 14–26. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8_2

    Chapter  Google Scholar 

  13. Eppstein, D., Havvaei, E.: Parameterized leaf power recognition via embedding into graph products. Algorithmica 82(8), 2337–2359 (2020)

    Article  MathSciNet  Google Scholar 

  14. Golovach, P.A., et al.: On recognition of threshold tolerance graphs and their complements. Discret. Appl. Math. 216, 171–180 (2017)

    Article  MathSciNet  Google Scholar 

  15. Golumbic, M.C., Weingarten, N.L., Limouzy, V.: Co-TT graphs and a characterization of split co-TT graphs. Discret. Appl. Math. 165, 168–174 (2014)

    Article  MathSciNet  Google Scholar 

  16. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000)

    Article  MathSciNet  Google Scholar 

  17. Jaffke, L., Kwon, O., Strømme, T.J.F., Telle, J.A.: Mim-width III. graph powers and generalized distance domination problems. Theor. Comput. Sci. 796, 216–236 (2019). https://doi.org/10.1016/j.tcs.2019.09.012

  18. Lafond, M.: On strongly chordal graphs that are not leaf powers. In: Graph-Theoretic Concepts in Computer Science - 43rd International Workshop, WG 2017, Eindhoven, The Netherlands, 21–23 June 2017, Revised Selected Papers, pp. 386–398 (2017). https://doi.org/10.1007/978-3-319-68705-6_29

  19. Lafond, M.: Recognizing k-leaf powers in polynomial time, for constant k. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1384–1410. SIAM (2022). https://doi.org/10.1137/1.9781611977073.58

  20. Monma, C.L., Reed, B.A., Trotter, W.T.: Threshold tolerance graphs. J. Graph Theor. 12(3), 343–362 (1988)

    Article  Google Scholar 

  21. Nevries, R., Rosenke, C.: Towards a characterization of leaf powers by clique arrangements. Graphs Combin. 32(5), 2053–2077 (2016). https://doi.org/10.1007/s00373-016-1707-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. J. Algorithms 42(1), 69–108 (2002)

    Article  MathSciNet  Google Scholar 

  23. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  Google Scholar 

  24. Azer, E.S., Ebrahimabadi, M.H., Malikić, S., Khardon, R., Sahinalp, S.C.: Tumor phylogeny topology inference via deep learning. iScience 23(11), 101655 (2020). https://doi.org/10.1016/j.isci.2020.101655

    Article  Google Scholar 

  25. Tamir, A.: A class of balanced matrices arising from location problems. Siam J. Algebraic Discrete Methods 4, 363–370 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Arne Telle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benjamin, B., Høgemo, S., Telle, J.A., Vatshelle, M. (2022). Recognition of Linear and Star Variants of Leaf Powers is in P. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics