Skip to main content

Minimal Roman Dominating Functions: Extensions and Enumeration

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Abstract

Roman domination is one of the many variants of domination that keeps most of the complexity features of the classical domination problem. We prove that Roman domination behaves differently in two aspects: enumeration and extension. We develop non-trivial enumeration algorithms for minimal Roman dominating functions with polynomial delay and polynomial space. Recall that the existence of a similar enumeration result for minimal dominating sets is open for decades. Our result is based on a polynomial-time algorithm for Extension Roman Domination: Given a graph \(G=(V,E)\) and a function \(f:V\rightarrow \{0,1,2\}\), is there a minimal Roman dominating function \(\tilde{f}\) with \(f\le \tilde{f}\)? Here, \(\le \) lifts \(0< 1< 2\) pointwise; minimality is understood in this order. Our enumeration algorithm is also analyzed from an input-sensitive viewpoint, leading to a run-time estimate of \(\mathcal {O}(1.9332^n)\) for graphs of order n; this is complemented by a lower bound example of \(\varOmega (1.7441^n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Historically, a logical extension problem [10] should be mentioned, as it has led to [40, Théorème 2.16], dealing with an extension variant of 3-Hitting Set; also see [40, Proposition 3.39] concerning implications for Extension Dominating Set.

  2. 2.

    According to [29], this notion of minimality for rdf was coined by Cockayne but then dismissed, as it does not give a proper notion of upper Roman domination. However, in our context, this definition seems to be the most natural one, as it also perfectly fits the extension framework proposed in [13]; see the discussions in Sect. 7.

  3. 3.

    This condition assumes that our graphs have non-empty vertex sets.

References

  1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Data reductions and combinatorial bounds for improved approximation algorithms. J. Comput. Syst. Sci. 82(3), 503–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abu-Khzam, F.N., Heggernes, P.: Enumerating minimal dominating sets in chordal graphs. Inf. Process. Lett. 116(12), 739–743 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazgan, C., et al.: The many facets of upper domination. Theoret. Comput. Sci. 717, 2–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benecke, S.: Higher order domination of graphs. Master’s thesis, Department of Applied Mathematics of the University of Stellebosch, South Africa (2004). http://dip.sun.ac.za/~vuuren/Theses/Benecke.pdf

  5. Bermudo, S., Fernau, H.: Computing the differential of a graph: hardness, approximability and exact algorithms. Discret. Appl. Math. 165, 69–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bermudo, S., Fernau, H.: Combinatorics for smaller kernels: the differential of a graph. Theoret. Comput. Sci. 562, 330–345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bermudo, S., Fernau, H., Sigarreta, J.M.: The differential and the Roman domination number of a graph. Appl. Anal. Discret. Math. 8, 155–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bläsius, T., Friedrich, T., Lischeid, J., Meeks, K., Schirneck, M.: Efficiently enumerating hitting sets of hypergraphs arising in data profiling. In: Algorithm Engineering and Experiments (ALENEX), pp. 130–143. SIAM (2019)

    Google Scholar 

  9. Bonamy, M., Defrain, O., Heinrich, M., Raymond, J.F.: Enumerating minimal dominating sets in triangle-free graphs. In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). LIPIcs, vol. 126, pp. 16:1–16:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  10. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optim. Methods Softw. 10(2), 147–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casel, K., Fernau, H., Khosravian Ghadikolaei, M., Monnot, J., Sikora, F.: Extension of some edge graph problems: standard and parameterized complexity. In: Gąsieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 185–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0_13

    Chapter  MATH  Google Scholar 

  12. Fernau, H., Huber, K.T., Naor, J.S.: Invited talks. In: Calamoneri, T., Corò, F. (eds.) CIAC 2021. LNCS, vol. 12701, pp. 3–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75242-2_1

    Chapter  Google Scholar 

  13. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: On the complexity of solution extension of optimization problems. Theoret. Comput. Sci. 904, 48–65 (2022). https://doi.org/10.1016/j.tcs.2021.10.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for Roman domination. SIAM J. Discret. Math. 23, 1575–1586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chapelle, M., Cochefert, M., Couturier, J.-F., Kratsch, D., Liedloff, M., Perez, A.: Exact algorithms for weak Roman domination. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 81–93. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45278-9_8

    Chapter  MATH  Google Scholar 

  16. Chellali, M., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., McRae, A.A.: A Roman domination chain. Graphs Comb. 32(1), 79–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockayne, E.J., Dreyer, P., Jr., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domination in graphs. Discret. Math. 278, 11–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Couturier, J., Heggernes, P., van ’t Hof, P., Kratsch, D.: Minimal dominating sets in graph classes: combinatorial bounds and enumeration. Theoret. Comput. Sci. 487, 82–94 (2013)

    Google Scholar 

  19. Couturier, J., Letourneur, R., Liedloff, M.: On the number of minimal dominating sets on some graph classes. Theoret. Comput. Sci. 562, 634–642 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Creignou, N., Kröll, M., Pichler, R., Skritek, S., Vollmer, H.: A complexity theory for hard enumeration problems. Discret. Appl. Math. 268, 191–209 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dreyer, P.A.: Applications and variations of domination in graphs. Ph.D. thesis, Rutgers University, New Jersey, USA (2000)

    Google Scholar 

  22. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S.M.: On the Roman domination number of a graph. Discret. Math. 309(10), 3447–3451 (2009)

    Article  MATH  Google Scholar 

  24. Fernau, H.: Roman domination: a parameterized perspective. Int. J. Comput. Math. 85, 25–38 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gainer-Dewar, A., Vera-Licona, P.: The minimal hitting set generation problem: algorithms and computation. SIAM J. Discret. Math. 31(1), 63–100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Villanger, Y.: Enumerating minimal dominating sets in chordal bipartite graphs. Discret. Appl. Math. 199, 30–36 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Golovach, P.A., Heggernes, P., Kratsch, D.: Enumerating minimal connected dominating sets in graphs of bounded chordality. Theoret. Comput. Sci. 630, 63–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker (1998)

    Google Scholar 

  29. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in Graphs. Developments in Mathematics, vol. 64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51117-3

    Book  MATH  Google Scholar 

  30. Hedetniemi, S.T., Rubalcaba, R.R., Slater, P.J., Walsh, M.: Few compare to the great Roman empire. Congr. Numer. 217, 129–136 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Discret. Math. 28(4), 1916–1929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algorithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_37

    Chapter  Google Scholar 

  33. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 138–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_11

    Chapter  MATH  Google Scholar 

  34. Kraner Šumenjak, T., Pavlić, P., Tepeh, A.: On the Roman domination in the lexicographic product of graphs. Discret. Appl. Math. 160(13–14), 2030–2036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liedloff, M.: Algorithmes exacts et exponentiels pour les problèmes NP-difficiles: domination, variantes et généralisations. Ph.D. thesis, Université Paul Verlaine - Metz, France (2007)

    Google Scholar 

  36. Liedloff, M., Kloks, T., Liu, J., Peng, S.L.: Efficient algorithms for Roman domination on some classes of graphs. Discret. Appl. Math. 156(18), 3400–3415 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, C.H., Chang, G.J.: Roman domination on 2-connected graphs. SIAM J. Discret. Math. 26(1), 193–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, C.H., Chang, G.J.: Upper bounds on Roman domination numbers of graphs. Discret. Math. 312(7), 1386–1391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, C.H., Chang, G.J.: Roman domination on strongly chordal graphs. J. Comb. Optim. 26(3), 608–619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mary, A.: Énumération des dominants minimaux d’un graphe. Ph.D. thesis, LIMOS, Université Blaise Pascal, Clermont-Ferrand, France, November 2013

    Google Scholar 

  41. Mashburn, J.L., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.: Differentials in graphs. Utilitas Math. 69, 43–54 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Mobaraky, B.P., Sheikholeslami, S.M.: Bounds on Roman domination numbers of graphs. Matematitchki Vesnik 60, 247–253 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Pagourtzis, A., Penna, P., Schlude, K., Steinhöfel, K., Taylor, D.S., Widmayer, P.: Server placements, Roman domination and other dominating set variants. In: Baeza-Yates, R.A., Montanari, U., Santoro, N. (eds.) Foundations of Information Technology in the Era of Networking and Mobile Computing, IFIP 17th World Computer Congress – TC1 Stream/2nd IFIP International Conference on Theoretical Computer Science IFIP TCS, pp. 280–291. Kluwer (2002). Also available as Technical report 365, ETH Zürich, Institute of Theoretical Computer Science, 10/2001

    Google Scholar 

  44. Peng, S.L., Tsai, Y.H.: Roman domination on graphs of bounded treewidth. In: The 24th Workshop on Combinatorial Mathematics and Computation Theory, pp. 128–131 (2007)

    Google Scholar 

  45. ReVelle, C.S., Rosing, K.E.: Defendens imperium Romanum: a classical problem in military strategy. Am. Math. Monthly 107, 585–594 (2000). http://www.jhu.edu/~jhumag/0497web/locate3.html

  46. van Rooij, J.M.M.: Exact exponential-time algorithms for domination problems in graphs. Ph.D. thesis, Universiteit Utrecht, The Netherlands (2011)

    Google Scholar 

  47. Shang, W., Wang, X., Hu, X.: Roman domination and its variants in unit disk graphs. Discret. Math. Algorithms Appl. 2(1), 99–106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shi, Z., Koh, K.M.: Counting the number of minimum Roman dominating functions of a graph. Technical report, arXiv/CoRR, abs/1403.1019 (2014)

    Google Scholar 

  49. Stewart, I.: Defend the Roman empire. Sci. Am. 281(6), 136–138 (1999)

    Article  Google Scholar 

  50. Xing, H.M., Chen, X., Chen, X.G.: A note on Roman domination in graphs. Discret. Math. 306(24), 3338–3340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xueliang, F., Yuansheng, Y., Baoqi, J.: Roman domination in regular graphs. Discret. Math. 309(6), 1528–1537 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yero, I.G., Rodríguez-Velázquez, J.A.: Roman domination in Cartesian product graphs and strong product graphs. Appl. Anal. Discret. Math. 7, 262–274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Fernau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abu-Khzam, F.N., Fernau, H., Mann, K. (2022). Minimal Roman Dominating Functions: Extensions and Enumeration. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics