Skip to main content

Pipeline for Detection of Transient Objects in Optical Surveys

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2021)

Abstract

Identification and following study of optical transients (OTs) associated with cosmic gamma-ray bursts (GRBs) and gravitational wave (GWs) events is a relevant research problem of multi-messenger astronomy. Since their first discovery, one of the greatest challenges is the localisation uncertainty. The sources of OTs are initially localised with space gamma and X-ray telescopes or ground-based laser interferometers LIGO, Virgo and KAGRA having the poor positional accuracy on average. A joint localisation area typically covers about 1000 deg\(^{2}\) of the sky based on previous runs of LIGO and Virgo. The last 25 years has seen a rapid development of the robotic optical surveys. Such instruments equipped with wide-field cameras allow to cover the entire localisation area in several scans. As the result, a massive amount of scientific products is generated, including bulky series of astronomical images. After their processing, large object catalogues that may contain up to \(10^5\) celestial objects are created. It is necessary to identify the peculiar objects among other in the formed catalogues. Both data processing and identification of OTs must be carried out in real-time due to steep decay of brightness. To response pointed problems, the software pipelines are becoming a relevant solution. This paper provides a complete overview of the units of the actively developed pipeline for OT detection. The accuracy and performance metrics of the pipeline units, estimated for two wide-field telescopes are given. In conclusions, the future plans for the development are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gcn.gsfc.nasa.gov/gcn3_archive.html.

  2. 2.

    A technique to estimate a redshift by constructing a SED from imaging observations.

  3. 3.

    https://www.lsst.org.

  4. 4.

    https://classic.sdss.org/dr7/algorithms/sdssUBVRITransform.html.

  5. 5.

    https://vizier.u-strasbg.fr/viz-bin/VizieR.

  6. 6.

    https://github.com/astropy/astroscrappy.

  7. 7.

    http://astrometry.net.

  8. 8.

    https://www.scipy.org/scipylib/index.html.

  9. 9.

    In a similar way like SExtractor does, see the documentation: https://sextractor.readthedocs.io/en/latest/Position.html.

  10. 10.

    All objects are assumed to be elliptical.

  11. 11.

    DASK is a python library https://dask.org.

  12. 12.

    See Kosik’s paper http://www.iki.rssi.ru/seminar/virtual/kosik.doc.

  13. 13.

    Description of the SIP https://fits.gsfc.nasa.gov/registry/sip.html.

  14. 14.

    https://sqlite.org/index.html.

  15. 15.

    https://www.sqlalchemy.org/.

  16. 16.

    https://github.com/SAOImageDS9/SAOImageDS9.

  17. 17.

    https://astropy-regions.readthedocs.io/en/stable/index.html.

  18. 18.

    https://fermi.gsfc.nasa.gov/ssc/data/analysis/rmfit/gbm_data_tools/gdt-docs/index.html.

  19. 19.

    https://github.com/healpy/healpy.

  20. 20.

    https://github.com/acbecker/hotpants.

References

  1. Klebesadel, R.W., et al.: Observations of gamma-ray bursts of cosmic origin. ApJ 182, 85–88 (1973)

    Article  Google Scholar 

  2. Hawking, S.W., Israel, W.: Three Hundred Years of Gravitation. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  3. Wheaton, W.A., et al.: The direction and spectral variability of a cosmic gamma-ray burst. ApJ 185, 57–61 (1973). https://doi.org/10.1086/181320

    Article  Google Scholar 

  4. Akerlof, C., et al.: Prompt optical observations of gamma-ray bursts. ApJ 532, 25–28 (2000). https://doi.org/10.1086/312567

    Article  Google Scholar 

  5. Kouveliotou, C., et al.: Identification of two classes of gamma-ray bursts. ApJ 413, 101–104 (1993)

    Article  Google Scholar 

  6. Wang, L., Wheeler, J.C.: The supernova-gamma-ray burst connection. ApJL 504, L87–L90 (1998). https://doi.org/10.1086/311580

    Article  Google Scholar 

  7. Kulkarni, S.R., et al.: Radio emission from the unusual supernova 1998bw and its association with the \(\gamma \)-ray burst of 25 April 1998. Nature 395, 663–669 (1998). https://doi.org/10.1038/27139

    Article  Google Scholar 

  8. Lipunov, V., et al.: Master robotic net. Adv. Astron. 2010, 1(6) (2010). https://doi.org/10.1155/2010/349171

  9. Bellm, E.C., et al.: The Zwicky transient facility: system overview, performance, and first results. PASP 131, 018002 (2019). https://doi.org/10.1088/1538-3873/aaecbe

  10. Masci, F.J., et al.: The Zwicky transient facility: data processing, products, and archive. PASP. 131, 995, 018003 (2018). https://doi.org/10.1088/1538-3873/aae8ac

  11. Masci, F.J., et al.: The IPAC image subtraction and discovery pipeline for the intermediate palomar transient factory. Publ. Astron. Soc. Pac. 129, 014002 (2017). https://doi.org/10.1088/1538-3873/129/971/014002

  12. Bertin, E., et al.: The TERAPIX pipeline. 281, 228 (2002)

    Google Scholar 

  13. Bertin, E.: Automatic astrometric and photometric calibration with SCAMP. In: Astronomical Data Analysis Software and Systems XV, vol. 351, p. 112 (2006)

    Google Scholar 

  14. Castro-Tirado, A.J., et al.: The burst observer and optical transient exploring system (BOOTES). AAS 138(3), 583–585 (1999). https://doi.org/10.1051/aas:1999362

  15. Dyer, M.J., et al.: A telescope control and scheduling system for the Gravitational-wave Optical Transient Observer (GOTO). In: Observatory Operations: Strategies, Processes, and Systems VII, p. 107040C. International Society for Optics and Photonics (2018). https://doi.org/10.1117/12.2311865

  16. Devyatkin, A.V., et al.: Apex I and Apex II software packages for the reduction of astronomical CCD observations. Sol. Syst. Res. 44, 68–80 (2010). https://doi.org/10.1134/S0038094610010090

  17. Kouprianov, V.: Apex II + FORTE: data acquisition software for space surveillance. 39, 974 (2012)

    Google Scholar 

  18. van Dokkum, P.G.: Cosmic-ray rejection by Laplacian edge detection. PASP 113, 1420–1427 (2001). https://doi.org/10.1086/323894

  19. He, Y., et al.: Scan-flood fill(SCAFF): an efficient automatic precise region filling algorithm for complicated regions (2019)

    Google Scholar 

  20. Beard, S.M., et al.: The cosmos system for crowded-field analysis of digitized photographic plate scans. MNRAS 247, 311 (1990)

    Google Scholar 

  21. Bertin, E., Arnouts, S.: SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996). https://doi.org/10.1051/aas:1996164

    Article  Google Scholar 

  22. Valdes, F.G., et al.: FOCAS automatic catalog matching algorithms. PASP 107, 1119 (1995). https://doi.org/10.1086/133667

    Article  Google Scholar 

  23. Groth, E.J.: A pattern-matching algorithm for two-dimensional coordinate lists. AsJ 91, 1244–1248 (1986). https://doi.org/10.1086/114099

    Article  Google Scholar 

  24. Monet, D.G., et al.: The USNO-B catalog. Astron. J. 125, 984–993 (2003). https://doi.org/10.1086/345888

    Article  Google Scholar 

  25. Gunn, J.E., et al.: The 2.5 m telescope of the Sloan digital sky survey. ApJ 131, 2332–2359 (2006). https://doi.org/10.1086/500975

  26. Chambers, K.C., et al.: The Pan-STARRS1 surveys. arXiv e-prints. 1612, arXiv:1612.05560 (2016)

  27. Lang, D., et al.: Astrometry.net: blind astrometric calibration of arbitrary astronomical images. AJ 139(5), 1782–1800 (2010). https://doi.org/10.1088/0004-6256/139/5/1782

  28. Krimm, H.A., et al.: Swift burst alert telescope data products and analysis software. In: AIP Conference Proceedings, vol. 727, pp. 659–662 (2004). https://doi.org/10.1063/1.1810929

  29. Case, G.L., et al.: Monitoring the low-energy gamma-ray sky using earth occultation with GLAST GBM. In: AIP Conference Proceedings, vol. 921, pp. 538–539 (2007). https://doi.org/10.1063/1.2757440

  30. Marshall, S., et al.: The ROTSE project. Bull. Am. Astron. Soc. 1290 (1997)

    Google Scholar 

  31. Coulter, D.A., et al.: Swope supernova survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017). https://doi.org/10.1126/science.aap9811

  32. Costa, E., et al.: Discovery of an X-ray afterglow associated with the \(\gamma \)-ray burst of 28 February 1997. Nature 387, 783–785 (1997). https://doi.org/10.1038/42885

    Article  Google Scholar 

  33. Krimm, H.A., et al.: GRB 090423: swift detection of a burst. GRB Coordinates Netw. 9198, 1 (2009)

    Google Scholar 

  34. Tanvir, N., et al.: GRB 090423: VLT/ISAAC spectroscopy. GRB Coordinates Netw. 9219, 1 (2009)

    Google Scholar 

  35. Ukwatta, T.N., et al.: GRB 090429B: swift detection of a burst. GRB Coordinates Netw. 9281, 1 (2009)

    Google Scholar 

  36. Cucchiara, A., et al.: A photometric redshift of z 9.4 for GRB 090429B. Astrophys. J. 736(7) (2011). https://doi.org/10.1088/0004-637X/736/1/7

  37. Akerlof, C.W., et al.: The ROTSE-III robotic telescope system. Publ. Astron. Soc. Pac. 115, 132–140 (2003). https://doi.org/10.1086/345490

    Article  Google Scholar 

  38. Akerlof, C.W., McKay, T.A.: GRB990123, early optical counterpart detection. GRB Coordinates Netw. 205, 1 (1999)

    Google Scholar 

  39. Piro, L.: GRB990123, BeppoSAX WFC detection and NFI planned follow-up. GRB Coordinates Netw. 199, 1 (1999)

    Google Scholar 

  40. Collaboration, G., et al.: Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018). https://doi.org/10.1051/0004-6361/201833051

  41. Stetson, P.B.: DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191 (1987). https://doi.org/10.1086/131977

  42. Gorbovskoy, E.: GRB prompt optical observations by Master and Lomonosov. 40, E1.17-13-14 (2014)

    Google Scholar 

  43. Gorbovskoy, E.S., et al.: Prompt, early and afterglow optical observations of five \(\gamma \)-ray bursts: GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A. Mon. Not. R. Astron. Soc. 421(3), 1874–1890 (2012). https://doi.org/10.1111/j.1365-2966.2012.20195.x

    Article  Google Scholar 

  44. Abbott, B.P., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    Article  Google Scholar 

  45. Shapiro, I.I.: Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964). https://doi.org/10.1103/PhysRevLett.13.789

    Article  MathSciNet  Google Scholar 

  46. Skrutskie, M.F., et al.: The two micron all sky survey (2MASS). AJ 131(2), 1163 (2006). https://doi.org/10.1086/498708

  47. Gehrels, N., et al.: The swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004). https://doi.org/10.1086/422091

  48. Barthelmy, S.D.: Burst Alert Telescope (BAT) on the swift MIDEX mission. In: X-Ray and Gamma-Ray Instrumentation for Astronomy XIII, pp. 175–189. International Society for Optics and Photonics (2004). https://doi.org/10.1117/12.506779

  49. Roming, P.W.A., et al.: The swift ultra-violet/optical telescope. In: X-Ray and Gamma-Ray Instrumentation for Astronomy XIII, pp. 262–276. International Society for Optics and Photonics (2004). https://doi.org/10.1117/12.504554

  50. Burrows, D.N., et al.: The swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005). https://doi.org/10.1007/s11214-005-5097-2

    Article  Google Scholar 

  51. Sari, R., et al.: Jets in GRBs. Astrophys. J. 519(1), L17–L20 (1999). https://doi.org/10.1086/312109

    Article  Google Scholar 

  52. Mészáros, P., Rees, M.J.: Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997). https://doi.org/10.1086/303625

    Article  Google Scholar 

  53. Shappee, B., et al.: The all sky automated survey for supernovae (ASsAS-SiN). Am. Astron. Soc. Meeting 220, 432.03 (2012)

    Google Scholar 

  54. Bisnovatyi-Kogan, G.S., et al.: Pulsed gamma-ray emission from neutron and collapsing stars and supernovae. Astrophys. Space Sci. 35(1), 23–41 (1975). https://doi.org/10.1007/BF00644821

    Article  MathSciNet  Google Scholar 

  55. Colgate, S.A.: Prompt gamma rays and X rays from supernovae. Can. J. Phys. 46(10), S476–S480 (1968). https://doi.org/10.1139/p68-274

    Article  Google Scholar 

  56. Amati, L.: The correlation between peak energy and isotropic radiated energy in GRBs. Il Nuovo Cimento C 28(3), 251–258 (2005). https://doi.org/10.1393/ncc/i2005-10034-4

    Article  Google Scholar 

  57. Minaev, P.Y., Pozanenko, A.S.: The Ep, I-Eiso correlation: type I gamma-ray bursts and the new classification method. Mon. Not. R. Astron. Soc. 492, 1919–1936 (2020). https://doi.org/10.1093/mnras/stz3611

    Article  Google Scholar 

  58. Kochanek, C.S., Piran, T.: Gravitational waves and gamma-ray bursts. Astrophys. J. 417, L17 (1993). https://doi.org/10.1086/187083

    Article  Google Scholar 

  59. Becker, A.: HOTPANTS: high order transform of PSF and template subtraction. Astrophysics Source Code Library. ascl:1504.004 (2015)

    Google Scholar 

  60. Andreoni, I., et al.: Fast-transient searches in real time with ZTFReST: identification of three optically-discovered gamma-ray burst afterglows and new constraints on the Kilonova rate. arXiv:2104.06352 (2021)

  61. Yao, Y., et al.: ZTF and LT observations of ZTF21aayokph (AT2021lfa), a fast-fading red transient. GRB Coordinates Netw. 29938, 1 (2021)

    Google Scholar 

  62. Andreoni, I., et al.: ZTF21aahifke/AT2021clk: ZTF discovery of an optical fast transient (possible afterglow). GRB Coordinates Network, Circular Service, No. 29446. 9446 (2021)

    Google Scholar 

  63. The Physics of Gamma-Ray Bursts - Tsvi Piran. https://ned.ipac.caltech.edu/level5/March04/Piran/Piran7_11.html. Accessed 06 Aug 2021

  64. Piran, T.: Gamma-ray bursts and neutron star mergers - possibly the strongest explosions in the universe. In: AIP Conference on Proceedings, vol. 272, pp. 1626–1633 (1992). https://doi.org/10.1063/1.43418

  65. Narayan, R., et al.: Gamma-ray bursts as the death throes of massive binary stars. ApJ 395, L83 (1992). https://doi.org/10.1086/186493

    Article  Google Scholar 

  66. Abramovici, A., et al.: LIGO: the laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992). https://doi.org/10.1126/science.256.5055.325

    Article  Google Scholar 

  67. Bradaschia, C., et al.: The VIRGO project: a wide band antenna for gravitational wave detection. Nucl. Inst. Methods Phys. Res. A 289, 518–525 (1990). https://doi.org/10.1016/0168-9002(90)91525-G

    Article  Google Scholar 

  68. Blinnikov, S.I., et al.: Exploding neutron stars in close binaries. Sov. Astr. Let. 10, 177–179 (1984)

    Google Scholar 

  69. LIGO Scientific Collaboration, et al.: Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001

  70. Acernese, F., et al.: Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015). https://doi.org/10.1088/0264-9381/32/2/024001

    Article  Google Scholar 

  71. Savchenko, V., et al.: INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. ApJL 848, L15 (2017). https://doi.org/10.3847/2041-8213/aa8f94

    Article  Google Scholar 

  72. Goldstein, A., et al.: An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. ApJ 848, L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41

    Article  Google Scholar 

  73. Hjorth, J., et al.: The distance to NGC 4993: the host galaxy of the gravitational-wave event GW170817. ApJ 848(2), L31 (2017). https://doi.org/10.3847/2041-8213/aa9110

  74. Abbott, B.P., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. ApJL 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    Article  Google Scholar 

  75. Duev, D.A., et al.: Real-bogus classification for the Zwicky Transient Facility using deep learning. MNRAS 489(3), 3582–3590 (2019). https://doi.org/10.1093/mnras/stz2357

    Article  Google Scholar 

  76. Abbott, B.P., et al.: Search for gravitational-wave signals associated with gamma-ray bursts during the second observing run of advanced LIGO and advanced Virgo. ApJ 886, 75 (2019). https://doi.org/10.3847/1538-4357/ab4b48

    Article  Google Scholar 

  77. Flaugher, B., et al.: The dark energy camera. Astron. J. 150, 150 (2015). https://doi.org/10.1088/0004-6256/150/5/150

    Article  Google Scholar 

  78. Bloemen, S., et al.: The BlackGEM array: searching for gravitational wave source counterparts to study ultra-compact binaries. Astron. Soc. Pac. Conf. Ser. 496, 254 (2015)

    Google Scholar 

  79. Pozanenko, A.S., et al.: GRB 170817A associated with GW170817: multi-frequency observations and modeling of prompt gamma-ray emission. Astrophys. J. Lett. 852, L30 (2018). https://doi.org/10.3847/2041-8213/aaa2f6

    Article  Google Scholar 

  80. Gorski, K.M., et al.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. ApJ 622(2), 759–771 (2005). https://doi.org/10.1086/427976

    Article  Google Scholar 

  81. Alard, C.: Image subtraction with non-constant kernel solutions. astro-ph/9903111 (1999)

    Google Scholar 

  82. Laher, R.R., et al.: IPAC image processing and data archiving for the palomar transient factory. Publ. Astron. Soc. Pac. 126, 674 (2014). https://doi.org/10.1086/677351

  83. Lipunov, V.M., et al.: The optical identification of events with poorly defined locations: the case of the Fermi GBM GRB 140801A. Mon. Not. R. Astron. Soc. 455(1), 712–724 (2016). https://doi.org/10.1093/mnras/stv2228

    Article  Google Scholar 

  84. Zackay, B., et al.: Proper image subtraction-optimal transient detection, photometry, and hypothesis testing. ApJ 830(1), 27 (2016). https://doi.org/10.3847/0004-637X/830/1/27

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Pankov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pankov, N., Pozanenko, A., Kouprianov, V., Belkin, S. (2022). Pipeline for Detection of Transient Objects in Optical Surveys. In: Pozanenko, A., Stupnikov, S., Thalheim, B., Mendez, E., Kiselyova, N. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2021. Communications in Computer and Information Science, vol 1620. Springer, Cham. https://doi.org/10.1007/978-3-031-12285-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12285-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12284-2

  • Online ISBN: 978-3-031-12285-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics