Skip to main content

Psychophysiological Integration of Humans and Machines for Rehabilitation

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

In conventional man–machine interfaces for motor rehabilitation, the primary goal is to control the biomechanical interaction between the human and the machine or environment. However, integrating the human into the loop can be considered not only from a biomechanical view, but also with regard to physiological and psychological aspects. Such psychophysiological integration involves recording and controlling the patient’s physiological responses so that the patient receives appropriate stimuli and is challenged in a moderate but engaging way without causing undue stress or harm. In this chapter, we present examples first of physiological integration (without taking psychological aspects into account) and then of full psychophysiological integration where the patient’s cognitive workload is automatically estimated from physiological data. Examples are given both for gait rehabilitation and arm rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):380–94.

    PubMed  Google Scholar 

  2. Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):286–97.

    PubMed  Google Scholar 

  3. Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J Neuroeng Rehabil. 2018;15:46.

    PubMed  PubMed Central  Google Scholar 

  4. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;6(20).

    Google Scholar 

  5. Hobbs B, Artemiadis P. A review of robot-assisted lower-limb stroke therapy: unexplored paths and future directions in gait rehabilitation. Front Neurorobot. 2020;14:19.

    PubMed  PubMed Central  Google Scholar 

  6. Riener R, Munih M. Guest editorial: Special section on rehabilitation via bio-cooperative control. IEEE Trans Neural Syst Rehabil Eng. 2010;18(4):337–8.

    PubMed  Google Scholar 

  7. Gordon NF, Gulanick M, Costa F, Fletcher G, Franklin BA, Roth EJ, et al. Physical activity and exercise recommendations for stroke survivors: an American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascula. Stroke. 2004;35(5):1230–40.

    PubMed  Google Scholar 

  8. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    CAS  PubMed  Google Scholar 

  9. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, van Asseldonk EH, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    PubMed  Google Scholar 

  10. Nam KY, Kim HJ, Kwon BS, Park J-W, Lee HJ, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017;14:24.

    PubMed  PubMed Central  Google Scholar 

  11. Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J Clin Neurosci. 2018;48:11–7.

    PubMed  Google Scholar 

  12. Su SW, Huang S, Wang L, Celler BG, Savkin A V., Guo Y, et al. Nonparametric Hammerstein model based model predictive control for heart rate regulation. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007. p. 2984–7.

    Google Scholar 

  13. Colby SM, Kirkendall DT, Bruzga RF. Electromyographic analysis and energy expenditure of harness supported treadmill walking: implications for knee rehabilitation. Gait Posture. 1999;10(3):200–5.

    CAS  PubMed  Google Scholar 

  14. Koenig A, Caruso A, Bolliger M, Somaini L, Omlin X, Morari M, et al. Model-based heart rate control during robot-assisted gait training. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. 2011. p. 4151–4156.

    Google Scholar 

  15. Dietz V, Duysens J. Significance of load receptor input during locomotion: a review. Gait Posture. 2000;11(2):102–10.

    CAS  PubMed  Google Scholar 

  16. Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sport Med. 2003;33(7):517–38.

    Google Scholar 

  17. Hájek M, Potůček J, Brodan V. Mathematical model of heart rate regulation during exercise. Automatica. 1980;16(2):191–5.

    Google Scholar 

  18. Baum K, Essfeld D, Leyk D, Stegemann J. Blood pressure and heart rate during rest-exercise and exercise-rest transitions. Eur J Appl Physiol Occup Physiol. 1992;64(2):134–8.

    CAS  PubMed  Google Scholar 

  19. Fagraeus L, Linnarsson D. Autonomic origin of heart rate fluctuations at the onset of muscular exercise. J Appl Physiol. 1976;40(5):679–82.

    CAS  PubMed  Google Scholar 

  20. Tokgözoglu SL, Batur MK, Topçuoglu MA, Saribas O, Kes S, Oto A. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke. 1999;30(7):1307–11.

    PubMed  Google Scholar 

  21. Koenig A, Omlin X, Bergmann J, Zimmerli L, Bolliger M, Müller F, et al. Controlling patient participation during robot-assisted gait training. J Neuroeng Rehabil. 2011;8(14).

    Google Scholar 

  22. Wieser M, Gisler S, Sarabadani A, Ruest RM, Buetler L, Vallery H, et al. Cardiovascular control and stabilization via inclination and mobilization during bed rest. Med Biol Eng Comput. 2014;52(1):53–64.

    PubMed  Google Scholar 

  23. Tafreshi AS, Okle J, Klamroth-Marganska V, Riener R. Modeling the effect of tilting, passive leg exercise, and functional electrical stimulation on the human cardiovascular system. Med Biol Eng Comput. 2017;55:1693–708.

    Google Scholar 

  24. Taveggia G, Ragusa I, Trani V, Cuva D, Angeretti C, Fontanella M, et al. Robotic tilt table reduces the occurrence of orthostatic hypotension over time in vegetative states. Int J Rehabil Res. 2015;38(2):162–6.

    PubMed  Google Scholar 

  25. Darzi A, Goršič M, Novak D. Difficulty adaptation in a competitive arm rehabilitation game using real-time control of arm electromyogram and respiration. In: Proceedings of the 2017 IEEE International Conference on Rehabilitation Robotics. 2017. p. 857–62.

    Google Scholar 

  26. Catalán JM, García-Pérez JV, Blanco A, Martínez D, Lledó LD, García-Aracil N. Differences in physiological reactions due to a competitive rehabilitation game modality. Sensors. 2021;21(11):3681.

    PubMed  PubMed Central  Google Scholar 

  27. Goršič M, Cikajlo I, Goljar N, Novak D. A multisession evaluation of an adaptive competitive arm rehabilitation game. J Neuroeng Rehabil. 2017;14:128.

    PubMed  PubMed Central  Google Scholar 

  28. Pereira F, Bermúdez i Badia S, Jorge C, Cameirão MS. The use of game modes to promote engagement and social involvement in multi-user serious games: a within-person randomized trial with stroke survivors. J Neuroeng Rehabil. 2021;18:62.

    Google Scholar 

  29. Wu H-Y, Rubinstein M, Shih E, Guttag J, Durand F, Freeman W. Eulerian video magnification for revealing subtle changes in the world. ACM Trans Graph. 2012;31(4):1–8.

    Google Scholar 

  30. Dziuda L, Skibniewski FW, Krej M, Lewandowski J. Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor. IEEE Trans Biomed Eng. 2012;59(7):1934–42.

    PubMed  Google Scholar 

  31. Jakopin B, Mihelj M, Munih M. An unobtrusive measurement method for assessing physiological response in physical human–robot interaction. IEEE Trans Human-Machine Syst. 2017;47(4):474–85.

    Google Scholar 

  32. Korpelainen JT, Sotaniemi KA, Myllylä VV. Autonomic nervous system disorders in stroke. Clin Auton Res. 1999;9:325–33.

    CAS  PubMed  Google Scholar 

  33. Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126(4):866–72.

    PubMed  Google Scholar 

  34. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017;2017.

    Google Scholar 

  35. Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R. A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput. 2011;49(10):1213–23.

    PubMed  Google Scholar 

  36. Mihelj M, Novak D, Milavec M, Ziherl J, Olenšek A, Munih M. Virtual rehabilitation environment using principles of intrinsic motivation and game design. Presence Teleoperators Virtual Environ. 2012;21(1):1–15.

    Google Scholar 

  37. Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, et al. Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil. 2007 Jan;4(3).

    Google Scholar 

  38. Byrne EA, Parasuraman R. Psychophysiology and adaptive automation. Biol Psychol. 1996;42(3):249–68.

    CAS  PubMed  Google Scholar 

  39. Picard RW, Vyzas E, Healey J. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell. 2001;23(10):1175–91.

    Google Scholar 

  40. Chanel G, Rebetez C, Bétrancourt M, Pun T. Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans Syst Man Cybern – Part A Syst Humans. 2011;41(6):1052–63.

    Google Scholar 

  41. Healey JA, Picard RW. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transp Syst. 2005;6(2):156–66.

    Google Scholar 

  42. Gashi S, Lascio E Di, Santini S. Using students’ physiological synchrony to quantify the classroom emotional climate. In: UbiComp/ISWC 2018-Adjunct Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers. 2018.

    Google Scholar 

  43. Novak D, Mihelj M, Munih M. A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interact Comput. 2012;24:154–72.

    Google Scholar 

  44. Cameirão MS, Badia SB i, Mayank K, Guger C, Verschure PFMJ. Physiological responses during performance within a virtual scenario for the rehabilitation of motor deficits. In: Proceedings of PRESENCE 2007. Barcelona, Spain; 2007. p. 85–8.

    Google Scholar 

  45. Novak D, Mihelj M, Munih M. Psychophysiological responses to different levels of cognitive and physical workload in haptic interaction. Robotica. 2011;29(03):367–74.

    Google Scholar 

  46. Novak D, Mihelj M, Munih M. Dual-task performance in multimodal human-computer interaction: a psychophysiological perspective. Multimed Tools Appl. 2012;56(3):553–67.

    Google Scholar 

  47. Novak D, Mihelj M, Ziherl J, Olenšek A, Munih M. Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):400–10.

    PubMed  Google Scholar 

  48. Ziherl J, Novak D, Olenšek A, Mihelj M, Munih M. Evaluation of upper extremity robot-assistances in subacute and chronic stroke subjects. J Neuroeng Rehabil. 2010;7(52).

    Google Scholar 

  49. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17(3):354–81.

    Google Scholar 

  50. Delaney JP, Brodie DA. Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept Mot Skills. 2000;91(2):515–24.

    CAS  PubMed  Google Scholar 

  51. Boucsein W. Electrodermal Activity. 2nd ed. Springer; 2012.

    Google Scholar 

  52. Riener R, Koenig A, Bolliger M, Wieser M, Duschau-Wicke A, Vallery H. Bio-cooperative robotics: controlling mechanical, physiological and mental patient states. In: Proceedings of the 2009 IEEE 11th International Conference on Rehabilitation Robotics. 2009. p. 407–12.

    Google Scholar 

  53. Koenig A, Novak D, Omlin X, Pulfer M, Perreault E, Zimmerli L, et al. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):453–64.

    PubMed  Google Scholar 

  54. Rodriguez-Guerrero C, Fraile Marinero JC, Turiel JP, Muñoz V. Using, “human state aware” robots to enhance physical human-robot interaction in a cooperative scenario. Comput Methods Progr Bomed. 2013;19(112):250–9.

    Google Scholar 

  55. Rodriguez-Guerrero C, Knaepen K, Fraile-Marinero JC, Perez-Turiel J, Gonzalez-de-Garibay V, Lefeber D. Improving challenge/skill ratio in a multimodal interface by simultaneously adapting game difficulty and haptic assistance through psychophysiological and performance feedback. Front Neurosci. 2017;11:242.

    PubMed  PubMed Central  Google Scholar 

  56. Shirzad N, Van der Loos HFM. Evaluating the user experience of exercising reaching motions with a robot that predicts desired movement difficulty. J Mot Behav. 2016;48(1):31–46.

    PubMed  Google Scholar 

  57. Darzi A, Novak D. Automated affect classification and task difficulty adaptation in a competitive scenario based on physiological linkage: an exploratory study. Int J Hum Comput Stud. 2021;153: 102673.

    PubMed  PubMed Central  Google Scholar 

  58. Liu T, Saito G, Lin C, Saito H. Inter-brain network underlying turn-based cooperation and competition: a hyperscanning study using near-infrared spectroscopy. Sci Rep. 2017;7:8684.

    PubMed  PubMed Central  Google Scholar 

  59. Spapé MM, Kivikangas JM, Järvelä S, Kosunen I, Jacucci G, Ravaja N. Keep your opponents close: Social context affects EEG and fEMG linkage in a turn-based computer game. PLoS ONE. 2013;8(11): e78795.

    PubMed  PubMed Central  Google Scholar 

  60. Short MR, Hernandez-Pavon JC, Jones A, Pons JL. EEG hyperscanning in motor rehabilitation: a position paper. J Neuroeng Rehabil. 2021;18:98.

    PubMed  PubMed Central  Google Scholar 

  61. Knaepen K, Marušič U, Crea S, Guerrero CR, Vitiello N, Pattyn N, et al. Psychophysiological response to cognitive workload during symmetrical, asymmetrical and dual-task walking. Hum Mov Sci. 2015;40:248–63.

    PubMed  Google Scholar 

  62. McDuff D, Gontarek S, Picard RW. Remote measurement of cognitive stress via heart rate variability. In: Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014. p. 2957–60.

    Google Scholar 

  63. McCrea SM, Geršak G, Novak D. Absolute and relative user perception of classification accuracy in an affective videogame. Interact Comput. 2017;29(2):271–86.

    Google Scholar 

  64. Novak D, Nagle A, Riener R. Linking recognition accuracy and user experience in an affective feedback loop. IEEE Trans Affect Comput. 2014;5(2):168–72.

    Google Scholar 

  65. Goljar N, Javh M, Poje J, Ocepek J, Novak D, Ziherl J, et al. Psychophysiological responses to robot training in different recovery phases after stroke. In: Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics. 2011.

    Google Scholar 

  66. Nagle A, Wolf P, Riener R. Toward a system of customized video game mechanics based on player personality: relating the Big Five personality traits with difficulty adaptation in a first-person shooter game. Entertain Comput. 2016;13:10–24.

    Google Scholar 

  67. Darzi A, McCrea S, Novak D. User experience comparison between five dynamic difficulty adjustment methods for an affective computer game. JMIR Serious Games. 2021;9(2): e25771.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U. S. National Science Foundation under grant no. 2024813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna D. Novak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Novak, V.D., Koenig, A.C., Riener, R. (2022). Psychophysiological Integration of Humans and Machines for Rehabilitation. In: Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-08995-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08995-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08994-7

  • Online ISBN: 978-3-031-08995-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics