Skip to main content

Sibilla: A Tool for Reasoning about Collective Systems

  • Conference paper
  • First Online:
Coordination Models and Languages (COORDINATION 2022)

Abstract

Sibilla is a Java framework designed to support the analysis of Collective Adaptive Systems. These are systems composed by a large set of interactive agents that cooperate and compete to reach local and global goals. Sibilla is thought of container where different tools supporting specification and analysis of concurrent and distributed large scaled systems can be integrated. In this paper, a brief overview of Sibilla features is provided together with a simple example showing some of the tool’s practical capabilities.

This research has been partially supported by Italian PRIN project “IT-MaTTerS” n, 2017FTXR7S, and by POR MARCHE FESR 2014–2020, project “MIRACLE”, CUP B28I19000330007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The tool is available on GitHub at https://github.com/quasylab/sibilla and on Software Heritage with id swh:1:dir:fe015fb0a6fb6f5ee7cd6c58d446ab14168f39d4.

  2. 2.

    https://commons.apache.org/proper/commons-math/.

  3. 3.

    The full list of shell commands is available at the Sibilla web site.

  4. 4.

    https://matplotlib.org.

  5. 5.

    Detailed Sibilla documentation is available at https://github.com/quasylab/sibilla/wiki.

References

  1. Alrahman, Y.A., Nicola, R.D., Loreti, M.: Programming interactions in collective adaptive systems by relying on attribute-based communication. Sci. Comput. Program. 192, 102428 (2020)

    Article  Google Scholar 

  2. Bettini, L., et al.: The Klaim project: theory and practice. In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40042-4_4

    Chapter  Google Scholar 

  3. Bisong, E.: Google Colaboratory, pp. 59–64. Apress, Berkeley, CA (2019)

    Google Scholar 

  4. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  5. Kluyver, T., et al.: Jupyter notebooks - a publishing format for reproducible computational workflows. In: Loizides, F., Schmidt, B. (eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016)

    Google Scholar 

  6. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated model-checking for self-organising coordination. Sci. Comput. Program. 110, 23–50 (2015)

    Article  Google Scholar 

  7. Latella, D., Loreti, M., Massink, M.: FlyFast: a mean field model checker. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 303–309. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_18

    Chapter  Google Scholar 

  8. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: Fourth international conference on the quantitative evaluation of systems (QEST 2007), pp. 3–18. IEEE (2007)

    Google Scholar 

  9. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_4

    Chapter  Google Scholar 

  10. Nicola, R.D., Duong, T., Loreti, M.: Provably correct implementation of the ABC calculus. Sci. Comput. Program. 202, 102567 (2021)

    Article  Google Scholar 

  11. Nicola, R.D., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a markovian extension of a calculus for services. Electron. Notes Theoret. Comput. Sci. 229(4), 11–26 (2009)

    Article  Google Scholar 

  12. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming. ACM Trans. Autonom. Adapt. Syst. 9(2), 1–29 (2014)

    Article  Google Scholar 

  13. Reenskaug, T., Wold, P., Lehne, O.A., et al.: Working with objects: the OOram software engineering method, chapter 9.3.2, pp. 333–338. Citeseer (1996)

    Google Scholar 

  14. Ross, S.M., et al.: Stochastic processes, vol. 2. Wiley, New York (1996)

    MATH  Google Scholar 

  15. K. Team and other contributors. pyjnius. https://github.com/kivy/pyjnius

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Loreti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Del Giudice, N., Matteucci, L., Quadrini, M., Rehman, A., Loreti, M. (2022). Sibilla: A Tool for Reasoning about Collective Systems. In: ter Beek, M.H., Sirjani, M. (eds) Coordination Models and Languages. COORDINATION 2022. IFIP Advances in Information and Communication Technology, vol 13271. Springer, Cham. https://doi.org/10.1007/978-3-031-08143-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08143-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08145-3

  • Online ISBN: 978-3-031-08143-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics