Skip to main content

Algorithm Selection for the Team Orienteering Problem

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2022)

Abstract

This work utilizes Algorithm Selection for solving the Team Orienteering Problem (TOP). The TOP is an NP-hard combinatorial optimization problem in the routing domain. This problem has been modelled with various extensions to address different real-world problems like tourist trip planning. The complexity of the problem motivated to devise new algorithms. However, none of the existing algorithms came with the best performance across all the widely used benchmark instances. This fact suggests that there is a performance gap to fill. This gap can be targeted by developing more new algorithms as attempted by many researchers before. An alternative strategy is performing Algorithm Selection that will automatically choose the most appropriate algorithm for a given problem instance. This study considers the existing algorithms for the Team Orienteering Problem as the candidate method set. For matching the best algorithm with each problem instance, the specific instance characteristics are used as the instance features. An algorithm Selection approach, namely ALORS, is used to conduct the selection mission. The computational analysis based on 157 instances showed that Algorithm Selection outperforms the state-of-the-art algorithms despite the simplicity of the Algorithm Selection setting. Further analysis illustrates the match between certain algorithms and certain instances. Additional analysis showed that the time budget significantly affects the algorithms’ performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Almost equally-sized as 157 is not integer divisible by 10.

References

  1. Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007). https://doi.org/10.1007/s10732-006-9004-0

    Article  Google Scholar 

  2. Bouly, H., Dang, D.C., Moukrim, A.: A memetic algorithm for the team orienteering problem. 4OR 8(1), 49–70 (2010). https://doi.org/10.1007/s10288-008-0094-4

    Article  MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996)

    Article  Google Scholar 

  5. Dang, D.-C., Guibadj, R.N., Moukrim, A.: A PSO-based memetic algorithm for the team orienteering problem. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 471–480. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_48

    Chapter  Google Scholar 

  6. Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective PSO-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 229(2), 332–344 (2013)

    Article  Google Scholar 

  7. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  8. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. SIMULATION 76(2), 60–68 (2001)

    Article  Google Scholar 

  9. Gendreau, M., Potvin, J.Y.: Tabu search. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 165–186. Springer, Boston (2005). https://doi.org/10.1007/0-387-28356-0_6

    Chapter  Google Scholar 

  10. Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

  11. Glover, F.: Tabu search-part II. ORSA J. Comput. 2(1), 4–32 (1990)

    Article  Google Scholar 

  12. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logist. (NRL) 34(3), 307–318 (1987)

    Article  Google Scholar 

  13. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14(5), 403–420 (1970). https://doi.org/10.1007/BF02163027

    Article  MathSciNet  MATH  Google Scholar 

  14. Gomes, C., Selman, B.: Algorithm portfolio design: theory vs. practice. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI), Providence/Rhode Island, USA, 1–3 August 1997, pp. 190–197 (1997)

    Google Scholar 

  15. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hammami, F., Rekik, M., Coelho, L.C.: A hybrid adaptive large neighborhood search heuristic for the team orienteering problem. Comput. Oper. Res. 123, 105034 (2020)

    Article  MathSciNet  Google Scholar 

  17. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2016). https://doi.org/10.1007/s13675-016-0075-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_35

    Chapter  Google Scholar 

  19. Ke, L., Archetti, C., Feng, Z.: Ants can solve the team orienteering problem. Comput. Ind. Eng. 54(3), 648–665 (2008)

    Article  Google Scholar 

  20. Ke, L., Zhai, L., Li, J., Chan, F.T.: Pareto mimic algorithm: an approach to the team orienteering problem. Omega 61, 155–166 (2016)

    Article  Google Scholar 

  21. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  22. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  23. Kim, B.I., Li, H., Johnson, A.L.: An augmented large neighborhood search method for solving the team orienteering problem. Expert Syst. Appl. 40(8), 3065–3072 (2013)

    Article  Google Scholar 

  24. Lin, S.W.: Solving the team orienteering problem using effective multi-start simulated annealing. Appl. Soft Comput. 13(2), 1064–1073 (2013)

    Article  Google Scholar 

  25. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: an automatically configured algorithm selector. J. Artif. Intelli. Res. 53, 745–778 (2015)

    Article  Google Scholar 

  26. Mısır, M.: Matrix factorization based benchmark set analysis: a case study on HyFlex. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 184–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_16

    Chapter  Google Scholar 

  27. Mısır, M., Sebag, M.: ALORS: an algorithm recommender system. Artif. Intell. 244, 291–314 (2017)

    Article  MathSciNet  Google Scholar 

  28. Mısır, M.: Algorithm selection across selection hyper-heuristics. In: The Data Science for Optimization (DSO)@ IJCAI Workshop at the 29th International Joint Conference on Artificial Intelligence (IJCAI) (2021)

    Google Scholar 

  29. Mısır, M.: Algorithm selection on adaptive operator selection: a case study on genetic algorithms. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S. (eds.) LION 2021. LNCS, vol. 12931, pp. 237–251. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92121-7_20

    Chapter  Google Scholar 

  30. Mısır, M.: Benchmark set reduction for cheap empirical algorithmic studies. In: IEEE Congress on Evolutionary Computation (CEC), pp. 871–877. IEEE (2021)

    Google Scholar 

  31. Misir, M.: Generalized automated energy function selection for protein structure prediction on 2D and 3D HP models. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2021)

    Google Scholar 

  32. Mısır, M.: Selection-based per-instance heuristic generation for protein structure prediction of 2D HP model. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2021)

    Google Scholar 

  33. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  34. Orlis, C., Bianchessi, N., Roberti, R., Dullaert, W.: The team orienteering problem with overlaps: an application in cash logistics. Transp. Sci. 54(2), 470–487 (2020)

    Google Scholar 

  35. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 399–419. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_13

    Chapter  Google Scholar 

  36. Poggi, M., Viana, H., Uchoa, E.: The team orienteering problem: formulations and branch-cut and price. In: 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2010). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  37. Resende, M.G., Ribeiro, C.: Greedy randomized adaptive search procedures (GRASP). AT&T Labs Research Technical Report 98(1), 1–11 (1998)

    Google Scholar 

  38. Resendel, M.G., Ribeiro, C.C.: Grasp with path-relinking: recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. ORCS, vol. 32, pp. 29–63. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_2

    Chapter  Google Scholar 

  39. Ribeiro, J., Carmona, J., Mısır, M., Sebag, M.: A recommender system for process discovery. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 67–83. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_5

    Chapter  Google Scholar 

  40. Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  41. Souffriau, W., Vansteenwegen, P., Berghe, G.V., Van Oudheusden, D.: A path relinking approach for the team orienteering problem. Comput. Oper. Res. 37(11), 1853–1859 (2010)

    Article  MathSciNet  Google Scholar 

  42. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)

    Article  Google Scholar 

  43. Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem. Comput. Oper. Res. 32(6), 1379–1407 (2005)

    Article  Google Scholar 

  44. Tsakirakis, E., Marinaki, M., Marinakis, Y., Matsatsinis, N.: A similarity hybrid harmony search algorithm for the team orienteering problem. Appl. Soft Comput. 80, 776–796 (2019)

    Article  Google Scholar 

  45. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: A guided local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res. 196(1), 118–127 (2009)

    Article  Google Scholar 

  46. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated local search for the team orienteering problem with time windows. Comput. Oper. Res. 36(12), 3281–3290 (2009)

    Article  Google Scholar 

  47. Vidal, T., Maculan, N., Ochi, L.S., Vaz Penna, P.H.: Large neighborhoods with implicit customer selection for vehicle routing problems with profits. Transp. Sci. 50(2), 720–734 (2016)

    Article  Google Scholar 

  48. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  49. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32(1), 565–606 (2008)

    Article  Google Scholar 

  50. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: SATzilla 2012: improved algorithm selection based on cost-sensitive classification models. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, pp. 57–58 (2012)

    Google Scholar 

Download references

Acknowledgement

This study was supported by a Reintegration Grant project (119C013) of Scientific and Technological Research Council of Turkey (TUBITAK 2232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Mısır .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mısır, M., Gunawan, A., Vansteenwegen, P. (2022). Algorithm Selection for the Team Orienteering Problem. In: Pérez Cáceres, L., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2022. Lecture Notes in Computer Science, vol 13222. Springer, Cham. https://doi.org/10.1007/978-3-031-04148-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04148-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04147-1

  • Online ISBN: 978-3-031-04148-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics