Skip to main content

Selecting a Receiver for Wideband Spectrum Sensing in Cognitive Radio Systems Based on an Assessment of the Signal Environment Complexity

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2021, ruSMART 2021)

Abstract

A matrix receiver and a sub-Nyquist receiver are shown to provide the processing of the largest number of time-superimposed pulses. In practice, still, the number of pulses’ overlaps depends on the signal environment complexity. Besides, from the point of view of the wideband analyzer, random factors determine this environment. Therefore, to select the receiver type suitable for the developed wideband analyzer (WBA), a quantitative indicator of the signal environment complexity is required. In this paper, the probability of overlap not less than M pulses is proposed as such an indicator. The expressions obtained for calculating this probability allowed to plot the probability of overlapping in time of M and more pulses against the number of radio emission sources at different duty-off factors of the pulse sequences emitted the sources. To ease the attribution of obtained probabilities to actual operating conditions of the WBA, the paper provides the numbers of radars of various purposes which can form a signal environment with given complexity. The paper also gives recommendations on selecting an optimal receiver for the developed wideband analyzer considering implementation complexity and the desired ratio overlapped pulses processing efficiency. The latter is understood to be a ration of successfully processed overlapped pulses under predicted analyzer’s operational conditions characterized by types and numbers of radio emission sources. To summarize, the presented results make it possible to select a receiver for the wideband spectrum sensing depending on the potential complexity of the signal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999). https://doi.org/10.1109/98.788210

    Article  Google Scholar 

  2. Nguyen, V.T., Villain, F., Le Guillou, Y.: Cognitive radio RF: overview and challenges. VLSI Des. (2012). https://doi.org/10.1155/2012/716476

    Article  Google Scholar 

  3. Zeng, Y., Liang, Y.-C., Hoang, A.T., Zhang, R.: A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP J. Adv. Signal Process. (2010). https://doi.org/10.1155/2010/381465

  4. Zhang, L., Wang, Y., Tao, W., Jia, Z., Song, T., Pan, C.: Intelligent reflecting surface aided MIMO cognitive radio systems. IEEE Trans. Veh. Technol. 69(10), 11445–11457 (2020). https://doi.org/10.1109/TVT.2020.3011308

    Article  Google Scholar 

  5. Onumanyi, A.J., Abu-Mahfouz, A.M., Hancke, G.P.: Low power wide area network, cognitive radio and the internet of things: potentials for integration. Sensors 20, 6837 (2020)

    Article  Google Scholar 

  6. Wang, J., Ghosh, M., Challapali, K.: Emerging cognitive radio applications: a survey. IEEE Commun. Mag. 49(3), 74–81 (2011). https://doi.org/10.1109/MCOM.2011.5723803

    Article  Google Scholar 

  7. Kaur, M.J., Uddin, M., Verma, H.K., Ambedkar, B.R.: Role of cognitive radio on 4G communications a review. J. Emerg. Trends Comput. Inf. Sci. 3(2), 272–276 (2012)

    Google Scholar 

  8. Al-Bahri, M., Ruslan, K., Aleksey, B.: Integrating internet of things with the digital object architecture. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 540–547. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_47

    Chapter  Google Scholar 

  9. Pirmagomedov, R., Kirichek, R., Blinnikov, M., Koucheryavy, A.: UAV-based gateways for wireless nanosensor networks deployed over large areas. Comput. Commun. 146, 55–62 (2019)

    Article  Google Scholar 

  10. Simonov, A., Fokin, G., Sevidov, V., Sivers, M., Dvornikov, S.: Polarization direction finding method of interfering radio emission sources. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 208–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_18

    Chapter  Google Scholar 

  11. Moroz, A.V., Davydov, R.V., Davydov, V.V.: A new scheme for transmitting heterodyne signals based on a fiber-optical transmission system for receiving antenna devices of radar stations and communication systems. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 710–718. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_62

    Chapter  Google Scholar 

  12. Liu, F., Masouros, C., Petropulu, A.P., Griffiths, H., Hanzo, L.: Joint radar and communication design: applications, state-of-the-art, and the road ahead. IEEE Trans. Commun. 68(6), 3834–3862 (2020). https://doi.org/10.1109/TCOMM.2020.2973976

    Article  Google Scholar 

  13. Filin, S., Harada, H., Murakami, H., Ishizu, K.: International standardization of cognitive radio systems. IEEE Commun. Mag. 49(3), 82–89 (2011). https://doi.org/10.1109/MCOM.2011.5723804

    Article  Google Scholar 

  14. Onumanyi, A.J., Abu-Mahfouz, A.M., Hancke, G.P.: Adaptive threshold techniques for cognitive radio-based low power wide area network. Trans. Emerg. Telecommun. Technol. 31, e3908 (2020)

    Google Scholar 

  15. Xu, D., Yu, X., Sun, Y., Ng, D.W.K., Schober, R.: Resource allocation for IRS-assisted full-duplex cognitive radio systems. IEEE Trans. Commun. 68(12), 7376–7394 (2020). https://doi.org/10.1109/TCOMM.2020.3020838

    Article  Google Scholar 

  16. Thanuja, T.C., Daman, K.A., Patil, A.S.: Optimized spectrum sensing techniques for enhanced throughput in cognitive radio network. In: 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), pp. 137–141 (2020). https://doi.org/10.1109/ESCI48226.2020.9167576

  17. Makolkina, M., Pham, V.D., Kirichek, R., Gogol, A., Koucheryavy, A.: Interaction of AR and IoT applications on the basis of hierarchical cloud services. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 547–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_49

    Chapter  Google Scholar 

  18. Ateya, A.A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A., Koucheryavy, A.: Development of intelligent core network for tactile internet and future smart systems. J. Sens. Actuator Netw. 7(1), 7 (2018)

    Article  Google Scholar 

  19. Ateya, A.A., Muthanna, A., Vybornova, A., Darya, P., Koucheryavy, A.: Energy - aware offloading algorithm for multi-level cloud based 5G system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_33

    Chapter  Google Scholar 

  20. Yazdani, H., Vosoughi, A., Gong, X.: Achievable rates of opportunistic cognitive radio systems using reconfigurable antennas with imperfect sensing and channel estimation. IEEE Trans. Cogn. Commun. Netw. (2021). https://doi.org/10.1109/TCCN.2021.3056691

    Article  Google Scholar 

  21. Tsui, J.: Microwave receivers with electronic warfare applications (2005)

    Google Scholar 

  22. Tsui, J.: Special Design Topics in Digital Wideband Receivers (2010)

    Google Scholar 

  23. Poisel, R.: Electronic Warfare Receivers and Receiver Systems-Artech (2014)

    Google Scholar 

  24. Tsui, J.: Digital Techniques for Wideband Receivers (2004)

    Google Scholar 

  25. Anderson, G.W., Webb, D.C., Spezio, A.E., Lee, J.N.: Advanced channelization for RF, microwave, and millimeter wave applications. Proc. IEEE 79(3), 355–388 (1991)

    Article  Google Scholar 

  26. Javed, J.N., Khalil, M., Shabbir, A.: A survey on cognitive radio spectrum sensing: classifications and performance comparison. In: 2019 International Conference on Innovative Computing (ICIC), pp. 1–8. IEEE (2019)

    Google Scholar 

  27. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutorials 11(1), 116–130 (2009)

    Article  Google Scholar 

  28. Haykin, S., Thomson, D.J., Reed, J.H.: Spectrum sensing for cognitive radio. Proc. IEEE 97(5), 849–877 (2009). https://doi.org/10.1109/jproc.2009.2015711

    Article  Google Scholar 

  29. Axell, E., Leus, G., Larsson, E., Poor, H.: Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012). https://doi.org/10.1109/msp.2012.2183771

    Article  Google Scholar 

  30. Martian, A., Al Sammarraie, M.J.A., Vlădeanu, C., Popescu, D.C.: Three-event energy detection with adaptive threshold for spectrum sensing in cognitive radio systems. Sensors 20, 3614 (2020)

    Google Scholar 

  31. Aswini, V., Vamshidhar Reddy, A., Narendar, Ch., Renuka, N.: Probability of detection and probability of false alarm in cooperative spectrum sensing for cognitive radio systems using hard fusion rules. In: AIP Conference Proceedings, vol. 2358, p. 080020 (2021). https://doi.org/10.1063/5.0058411

  32. Liu, X., Zheng, K., Chi, K., Zhu, Y.H.: Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Trans. Wireless Commun. 19(11), 7663–7676 (2020). https://doi.org/10.1109/TWC.2020.3015260

    Article  Google Scholar 

  33. Salama, G.M., Taha, S.A.: Cooperative spectrum sensing and hard decision rules for cognitive radio network. In: 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS), pp. 1–6 (2020). https://doi.org/10.1109/ICCAIS48893.2020.9096740

  34. Quan, Z., Cui, S., Sayed, A.H., Poor, H.V.: Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans. Signal Process. 57(3), 1128–1140 (2008)

    Article  MathSciNet  Google Scholar 

  35. Aswathy, G.P., Gopakumar, K.: Sub-Nyquist wideband spectrum sensing techniques for cognitive radio: a review and proposed techniques. AEU-Int. J. Electron. Commun. 104, 44–57 (2019)

    Article  Google Scholar 

  36. Podstrigaev, A.S., Smolyakov, A.V., Maslov, I.V.: Probability of pulse overlap as a quantitative indicator of signal environment complexity. J. Russ. Univ. Radioelectronics 23(5), 37–45 (2020). https://doi.org/10.32603/1993-8985-2020-23-5-37-45

  37. Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Grebenikova, N.M., Davydov, R.V.: New method for determining the probability of signals overlapping for the estimation of the stability of the radio monitoring systems in a complex signal environment. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2019. LNCS, vol. 11660, pp. 525–533. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30859-9_45

    Chapter  Google Scholar 

  38. Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Slobodyan, M.G.: Features of the development of transceivers for information and communication systems considering the distribution of radar operating frequencies in the frequency range. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 509–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_45

    Chapter  Google Scholar 

  39. Patent RU2587645 (2016)

    Google Scholar 

  40. Kim, J., Utomo, D.R., Dissanayake, A., Han, S.K., Lee, S.G.: The evolution of channelization receiver architecture: principles and design challenges. IEEE Access 5, 25385–25395 (2017)

    Article  Google Scholar 

  41. Huang, S., Zhang, H., Sun, H., Yu, L., Chen, L.: Frequency estimation of multiple sinusoids with three sub-Nyquist channels. Signal Process. 139, 96–101 (2017)

    Article  Google Scholar 

  42. Yen, C.-P., Tsai, Y., Wang, X.: Wideband spectrum sensing based on sub-Nyquist sampling. IEEE Trans. Signal Process. 61(12), 3028–3040 (2013). https://doi.org/10.1109/tsp.2013.2251342

    Article  Google Scholar 

  43. Patent US5293114 (1994)

    Google Scholar 

  44. Podstrigaev, A.S., Lukiyanov, A.S., Galichina, A.A., Lavrov, A.P., Parfenov, M.V.: Wideband tunable delay line for microwave signals based on RF photonic components. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 424–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65726-0_38

    Chapter  Google Scholar 

  45. Patent RU2422845 (2011)

    Google Scholar 

  46. Jiao, B.: Leveraging UltraScale Architecture Transceivers for High-Speed Serial I/O Connectivity, p. 24 (2015). https://www.xilinx.com/support/documentation/white_papers/wp458-ultrascale-xcvrs-serialio.pdf

  47. Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S.: A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 46(4), 40–48 (2008)

    Article  Google Scholar 

  48. Self, A.G., Smith, B.G.: Intercept time and its prediction. IEE Proc. F Commun. Radar Signal Process. 132(4), 215–220 (1985). https://doi.org/10.1049/ip-f-1.1985.0052

    Article  Google Scholar 

  49. Kelly, S.W., Noone, G.P., Perkins, J.E.: Synchronization effects on probability of pulse train interception. IEEE Trans. Aerosp. Electron. Syst. 32(1), 213–220 (1996). https://doi.org/10.1109/7.481263

    Article  Google Scholar 

  50. Apfeld, S., Charlish, A., Koch W.: An adaptive receiver search strategy for electronic support. In: Sensor Signal Processing for Defence, Edinburgh, pp. 1–5 (2016). https://doi.org/10.1109/SSPD.2016.7590587

  51. Vaughan, I., Clarkson, L.: Optimisation of Periodic Search Strategies for Electronic Support. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1770–1784 (2011). https://doi.org/10.1109/TAES.2011.5937264

    Article  Google Scholar 

  52. Anderson, G.W., Webb, D.C., Spezio, A.E., Lee, J.N.: Advanced channelization for RF, microwave, and millimeterwave applications. Proc. IEEE 79(3), 355–388 (1991). https://doi.org/10.1109/5.75091

    Article  Google Scholar 

  53. Grover, R.: Kent: disrupting the net: ECM against advanced radars. Signal 32(6), 10–13 (1978)

    Google Scholar 

  54. Likhachev, V.P., Podstrigaev, A.S., Nhan, N.T., Davydov, V.V., Myazin, N.S.: Study of the accuracy of determining the location of radio emission sources with complex signals when using autocorrelation and matrix receivers in broadband tools for analyzing the electronic environment. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 326–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65726-0_29

    Chapter  Google Scholar 

  55. Kondakov, D., Kosmynin, A., Lavrov, A.: A method of simultaneous signals spectrum analysis for instantaneous frequency measurement receiver. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 200–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Podstrigaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podstrigaev, A.S., Smolyakov, A.V., Likhachev, V.P., Efimov, S.E., Davydov, V.V. (2022). Selecting a Receiver for Wideband Spectrum Sensing in Cognitive Radio Systems Based on an Assessment of the Signal Environment Complexity. In: Koucheryavy, Y., Balandin, S., Andreev, S. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2021 2021. Lecture Notes in Computer Science(), vol 13158. Springer, Cham. https://doi.org/10.1007/978-3-030-97777-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97777-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97776-4

  • Online ISBN: 978-3-030-97777-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics