Skip to main content

Optimization of Hoeken Mechanism for Walking Prototypes

  • Conference paper
  • First Online:
Advances and Applications in Computer Science, Electronics, and Industrial Engineering (CSEI 2021)

Abstract

Locomotion prototypes movement shows some lacks in the contact between the links and surfaces, slow speeds, wrong trajectories and variations in the height of the gravity center, that is why the purpose of the present document is to design a locomotion mechanism to minimize this problem. The purposed design in this investigation get inspired by the walker machine “plantigrade” and it is based on a Hoeken‘s mechanism modification, since it shows several movement advantages. The amendment executed is oriented towards the reduction of links which are part of the plantigrade machine, minimize the friction between the links and reduce the journey time for a stablished distance equal to 220 cm, getting parameters and equations for the design of the proposed mechanism, that owns a numeric value to the driver link equal to 2 cm, rocker, coupler and its extension to 2.5 cm and frame to 2.1 cm. To obtain a straight-line path, a gyroscope MPU 6050 is used to reduce lateral deviations. Finally, a journey time equal to 3.721 s is succeed, a reach of up till 4.5 cm, a maximum speed equal to 308 cm/s, a maximum acceleration of 281 cm/\(s^{2}\), the average deviation to the left equal to 5.312 cm and an average variation of the center of gravity height equal to 0.6425 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorrostieta E, Vargas E (2002) Diseñando un robot caminante de seis patas. In: Segundo Congreso Nacional de Robótica. Asociación Mexicana de Robótica e Instituto Tecnológico de Toluca, pp 181–186

    Google Scholar 

  2. Demirel M, Carbone G, Ceccarelli M, Kiper G (2018) Design and simulation of a novel hybrid leg mechanism for walking machines. In: New advances in mechanism and machine science. Springer, Heidelberg, pp 283–290

    Google Scholar 

  3. Todd DJ (2013) Walking machines: an introduction to legged robots. Springer, Heidelberg

    Google Scholar 

  4. Nuñez AV, Encalada P, Garcia CA, Guilcapi JR, Garcia MV (2019) Web-platform for developing man-machine interfaces based on OPC UA. In: 2019 IEEE fourth ecuador technical chapters meeting (ETCM), pp 1–6

    Google Scholar 

  5. Caiza G, Torres FI, Garcia MV (2021) Identification of patterns in the involvement of novice software developers in software testing processes. In: 2021 IEEE international conference on artificial intelligence and computer applications (ICAICA), pp 378–382

    Google Scholar 

  6. Hong M, Yun-xia L (2018) Walking mechanism and gait design of a novel compound quadruped robot. In: 2018 3rd international conference on robotics and automation engineering (ICRAE). IEEE, pp 10–13

    Google Scholar 

  7. Adrian R, García G (2016) Prototipo virtual de un robot móvil multi-terreno para aplicaciones de búsqueda y rescate. ResearchGate

    Google Scholar 

  8. Chiliquinga S, Manzano S, Córdova P, Garcia MV (2020) An approach of low-cost software-defined network (SDN) based internet of things, pp 70–74. https://doi.org/10.1109/Incodtrin51881.2020.00025

  9. Caiza G, Chiliquinga S, Manzano S, Garcia MV (2020) Software-defined network (SDN) based internet of things within the context of low-cost automation, vol 1, pp 587–591. https://doi.org/10.1109/INDIN45582.2020.9442180

  10. Desai SG, Annigeri AR, TimmanaGouda A (2019) Analysis of a new single degree-of-freedom eight link leg mechanism for walking machine. Mech Mach Theory 140:747–764

    Article  Google Scholar 

  11. Saab W, Ben-Tzvi P (2016) Design and analysis of a robotic modular leg mechanism. In: International design engineering technical conferences and computers and information in engineering conference, vol 50152. American Society of Mechanical Engineers, p V05AT07A062

    Google Scholar 

  12. Lozada-Martinez E, Naranjo JE, Garcia CA, Soria DM, Toscano OR, Garcia MV (2019) SCRUM and extreme programming agile model approach for virtual training environment design, pp 1–5. https://doi.org/10.1109/ETCM48019.2019.9014882

  13. Varela-Aldás J, Miranda-Quintana O, Guevara C, Castillo F, Palacios-Navarro G (2020) Educational robot using lego mindstorms and mobile device. In: Advances and applications in computer science, electronics and industrial engineering. Springer, Cham, pp 71–82

    Google Scholar 

  14. Kavathia D, Dave J (2021) Kinematic modeling of walking mechanism. In: Mechanism and machine science. Springer, Heidelberg, pp 229–237

    Google Scholar 

  15. Villa Tello K (2021) Selection of optimal lodging site in the city of Baños, Ecuador. In: Advances and applications in computer science, electronics and industrial engineering. Springer, Singapore, pp 53–65

    Google Scholar 

  16. Robert LN (2008) Design of Machinery. Mc Graw Hill, New York

    Google Scholar 

  17. Hoeltgebaum T, da Silva ES, Barreto RLP, Maletz ER, Morlin FV, Carboni AP, et al (2021) Walking mechanisms-a state of the art survey and new developments opportunities. In: International symposium on multibody systems and mechatronics. Springer, Heidelberg, pp 35–43

    Google Scholar 

  18. Zielinska T (2004) Development of walking machines; historical perspective. In: International symposium on history of machines and mechanisms. Springer, Heidelberg, pp 357–370

    Google Scholar 

  19. Onieva J (2019) Diseñn y construcción de un mecanismo andante. Universidad Politécnica de Madrid, Madrid. http://oa.upm.es/54412/1/TFG_JORGE_GONZALEZ_ONIEVA_JOHANSSON.pdf

  20. Cuadrado Mazón KC (2018) Análisis cinemático y cinético del mecanismo Theo Jansen. Diseño y construcción de juguete prototipo [B.S. thesis], Quito, 2018

    Google Scholar 

  21. Artobolevsky II (1975) Mechanisms in modern engineering design. Mir Publishers 1:454

    Google Scholar 

  22. Çıklaçandır S, Karabiber Ö, Kalafat Y, Can F (2017) Design a robot insect inspired by the camouflage characteristics of the leaf insect

    Google Scholar 

  23. Jansen T The Legsystem. https://www.youtube.com/watch?v=FFS-2axFo1Y&t=53s&ab_channel=theojansen

  24. Manickavelan K, Singh B, Sellappan N (2014) Design, fabrication and analysis of four bar walking machine based on Chebyshev’s parallel motion mechanism. Eur Int J Sci Technol 3(8):56–73

    Google Scholar 

  25. Zielinska T, Heng J (2002) Development of a walking machine: mechanical design and control problems. Mechatronics 12(5):737–754

    Article  Google Scholar 

  26. Sun J, Zhao J (2019) An adaptive walking robot with reconfigurable mechanisms using shape morphing joints. IEEE Rob Autom Lett 4(2):724–731

    Article  Google Scholar 

  27. Vujošević V, Mumović M, Tomović A, Tomović R (2018) Robot based on walking Jansen mechanism. In: IOP Conference series: materials science and engineering, vol. 393. IOP Publishing, p 012109

    Google Scholar 

  28. Komoda K, Wagatsuma H (2017) Energy-efficacy comparisons and multibody dynamics analyses of legged robots with different closed-loop mechanisms. Multibody Syst Dyn 40(2):123–153

    Article  MathSciNet  Google Scholar 

  29. MohdIsharudden F, Mohamed H, Rafaai ZM, Ho TYW, Kamarudin M (2020) Design and prototyping of a motorized legged robot with Klann linkage mechanism. Int J Emerg Trends Eng Res 8(5):1941–1945

    Article  Google Scholar 

  30. Bustamante Téllez J (2016) Diseño de mecanismo de locomoción andante con cambio de dirección

    Google Scholar 

  31. Wikimedia Commons: Plantigrade machine - Drawing.svg - Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Tchebyshevs$_$plantigrade$_$machine$_$-$_$Drawing.svg

Download references

Acknowledgment

This work was financed by Universidad Tecnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-0167-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herrera, V., Ilvis, D., Morales, L., Garcia, M. (2022). Optimization of Hoeken Mechanism for Walking Prototypes. In: Garcia, M.V., Fernández-Peña, F., Gordón-Gallegos, C. (eds) Advances and Applications in Computer Science, Electronics, and Industrial Engineering. CSEI 2021. Lecture Notes in Networks and Systems, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-030-97719-1_5

Download citation

Publish with us

Policies and ethics