Skip to main content

A Brief Literature Review of Mathematical Models of EMG Signals Through Hierarchical Analytical Processing

  • Conference paper
  • First Online:
Advances and Applications in Computer Science, Electronics, and Industrial Engineering (CSEI 2021)

Abstract

This paper presents a systematic review of the literature for the selection of a mathematical model to determine the behavior and constitution of electromyography (EMG) signals. The selection of a mathematical model can be determined according to the search criteria related to obtaining the same EMG signal. In this context, determining the alternatives and most representative characteristics of a mathematical model is done through a hierarchical analytical process (AHP). This process allows determining the functional, modular, descriptive, and resulting characteristics of a proposed mathematical model. Subsequently, these criteria are correlated with quantitative values for each alternative by means of the Centroid Method, which allows for multiple criteria decision making. Finally, the study presenting the mathematical models proposed by the EMG composition with the highest acceptance weight for Hand Gesture Recognition using Electromyographic Signals has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basmajian J, De Luca CJ (1985) Description and analysis of the EMG signal. In: Muscles Alive: their Functions Revealed by Electromyography, pp 65–100. https://ci.nii.ac.jp/naid/10011397436/

  2. Hewson DJ, Hogrel JY, Langeron Y, Duchêne J (2003) Evolution in impedance at the electrode-skin interface of two types of surface EMG electrodes during long-term recordings. J Electromyogr Kinesiol 13(3):273–279. https://doi.org/10.1016/S1050-6411(02)00097-4

    Article  Google Scholar 

  3. Espinosa RV, Soto M, Garcia MV, Naranjo JE (2021) Challenges of implementing cleaner production strategies in the food and beverage industry: literature review. In: García MV, Fernández-Peña F, Gordón-Gallegos C (eds) Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol 1307. AISC. Springer, Singapore, pp 121–133. https://doi.org/10.1007/978-981-33-4565-2_8

    Chapter  Google Scholar 

  4. García MV, Irisarri E, Pérez F, Estévez E, Marcos M (2016) OPC-UA communications integration using a CPPS architecture. In: 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), pp 1–6

    Google Scholar 

  5. Arief Z, Sulistijono IA, Ardiansyah RA (2016) Comparison of five time series EMG features extractions using Myo armband. In: Proceedings–2015 International Electronics Symposium: Emerging Technology in Electronic and Information, IES 2015. Institute of Electrical and Electronics Engineers Inc., pp 11–14

    Google Scholar 

  6. Parsaei H, Stashuk DW (2013) EMG signal decomposition using motor unit potential train validity. IEEE Trans Neural Syst Rehabil Eng 21(2):265–274. https://doi.org/10.1109/TNSRE.2012.2218287

    Article  Google Scholar 

  7. Rodriguez-Falces J, Navallas J, Mal A (2012) EMG modeling. In: Computational Intelligence in Electromyography Analysis–A Perspective on Current Applications and Future Challenges. In Tech

    Google Scholar 

  8. García MV, Irisarri E, Pérez F, Estévez E, Orive D, Marcos M (2016) Plant floor communications integration using a low cost CPPS architecture. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp 1–4

    Google Scholar 

  9. Irisarri E, García MV, Pérez F, Estévez E, Marcos M (2016) A model-based approach for process monitoring in oil production industry, pp 1–4. https://doi.org/10.1109/ETFA.2016.7733633

  10. Chowdhury RH, Reaz MBI, Bin Mohd Ali MA, Bakar AAA, Chellappan K, Chang TG: Surface electromyography signal processing and classification techniques. MDPI AG. http://www.mdpi.com/1424-8220/13/9/12431

  11. García MV, Pérez F, Calvo I, Moran G (2015) Developing CPPS within IEC-61499 based on low cost devices, pp 1–4. https://doi.org/10.1109/WFCS.2015.7160574

  12. García MV, Pérez F, Calvo I, Morán G (2014) Building industrial CPS with the IEC 61499 standard on low-cost hardware platforms, pp 1–4. https://doi.org/10.1109/ETFA.2014.7005272

  13. Solymosi T, Dombi J (1986) A method for determining the weights of criteria: the centralized weights. Eur J Oper Res 26(1):35–41. https://doi.org/10.1016/0377-2217(86)90157-8

    Article  MathSciNet  Google Scholar 

  14. Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169(1):1–29. https://doi.org/10.1016/j.ejor.2004.04.028

  15. Vargas J, Mayorga F, Guevara D, Álvarez E (2019) Analytic hierarchy process of selection in version control systems: applied to software development. Adv Intell Syst Comput 884:75–85

    Google Scholar 

  16. Juan P, Analuiza O, Carpio M, Castillo W (2021) Optimization of the mechanical properties responses of SBR 1502 rubber/amorphous silicon dioxide/others by DOE-MSR methodology. In: García MV, Fernández-Peña F, Gordón-Gallegos C (eds) Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol 1307. AISC. Springer, Singapore, pp 215–231. https://doi.org/10.1007/978-981-33-4565-2_14

    Chapter  Google Scholar 

  17. Angulo K, Gil D, Espitia H (2020) Method for edges detection in digital images through the use of cellular automata. In: Nummenmaa J, Pérez-González F, Domenech-Lega B, Vaunat J, Oscar Fernández-Peña F (eds) CSEI 2019, vol 1078. AISC. Springer, Cham, pp 3–21. https://doi.org/10.1007/978-3-030-33614-1_1

    Chapter  Google Scholar 

  18. Benalcázar ME et al (2017) Real-time hand gesture recognition using the Myo armband and muscle activity detection. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), pp 1–6

    Google Scholar 

  19. Nogales R, Benalcazar F, Guilcapi J, Vargas J (2021) Selection of classifiers for hand gesture recognition using analytic hierarchy process: a systematic literature review. In: García MV, Fernández-Peña F, Gordón-Gallegos C (eds) Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol 1307. AISC. Springer, Singapore, pp 265–278. https://doi.org/10.1007/978-981-33-4565-2_17

    Chapter  Google Scholar 

  20. Petersen E (2016) A mathematical model of surface electromyographic measurements. https://www.ime.uni-luebeck.de/fileadmin/files/Publications/PDFs/Pe16.pdf

  21. Ament S, Gregoire J, Gomes C (2019) Exponentially-Modified Gaussian Mixture Model: Applications in Spectroscopy. arXiv:1902.05601

  22. Petersen E, Rostalski P (2019) A comprehensive mathematical model of motor unit pool organization, surface electromyography, and force generation. Front Physiol 10(MAR):1–19. https://doi.org/10.3389/fphys.2019.00176

  23. Kuthe C, Uddanwadiker RV, Padole PM, Ramteke AA (2015) Mathematical model for skeletal muscle to simulate the concentric and eccentric contraction. MCB Mol Cell Biomech 12(1):1–16. https://doi.org/10.3970/mcb.2015.012.001

    Article  Google Scholar 

  24. Delis I, Berret B, Pozzo T, Panzeri S (2013) Quantitative evaluation of muscle synergy models: a single-trial task decoding approach. Front Comput Neurosci 7(FEB):8. https://doi.org/10.3389/fncom.2013.00008

  25. Clancy EA, Bouchard S, Rancourt D: Estimation and application of EMG amplitude during dynamic contractions. http://www.ncbi.nlm.nih.gov/pubmed/11838258

  26. McGill KC: Surface electromyogram signal modelling. http://link.springer.com/, https://doi.org/10.1007/BF02350985

  27. Petersen E, Rostalski P (2018) A comprehensive mathematical model of surface electromyography and force generation. bioRxiv, p 273458. https://doi.org/10.1101/273458

  28. De Luca CJ (1979) Physiology and mathematics of myoelectric signals. IEEE Trans Biomed Eng BME-26(6):313–325. https://doi.org/10.1109/TBME.1979.326534

  29. Farina D, Fosciand M, Merletti R (2002) Motor unit recruitment strategies investigated by surface EMG variables. J Appl Physiol 92(1):235–247. https://doi.org/10.1152/jappl.2002.92.1.235

  30. Shwedyk E, Balasubramanian R, Scott RN (1977) A nonstationary model for the electromyogram. IEEE Trans Biomed Eng BME-24(5):417–424. https://doi.org/10.1109/TBME.1977.326175

  31. Stegeman DF, Blok JH, Hermens HJ, Roeleveld K.: Surface EMG models: properties and applications. http://www.ncbi.nlm.nih.gov/pubmed/11018441

  32. Wang G, Zhang Y, Wang J (2014) The analysis of surface EMG signals with the wavelet-based correlation dimension method. Comput Math Methods Med 2014:1–9. https://doi.org/10.1155/2014/284308

    Article  MathSciNet  MATH  Google Scholar 

  33. Venugopal G, Deepak P, Ghosh DM, Ramakrishnan S (2017) Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm. Proc Inst Mech Eng Part H J Eng Med 231(11):1025–1033. https://doi.org/10.1177/0954411917727307

  34. Lei M, Wang Z-Z, Cai L-Y, Zhang H-H, Cai H (2002) An EMG classifying method based on Bayes’ criterion. Inst Electr Electron Eng (IEEE) 20:2625–2626

    Google Scholar 

  35. Mordhorst M, Heidlauf T, Röhrle O (2014) Mathematically modelling surface EMG signals. Pamm 14(1):123–124. https://doi.org/10.1002/pamm.201410049

    Article  Google Scholar 

  36. Day SJ, Hulliger M (2001) Experimental simulation of cat electromyogram: evidence for algebraic summation of motor-unit action-potential trains. J Neurophysiol 86(5):2144–2158. https://doi.org/10.1152/jn.2001.86.5.2144

  37. Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20(5):374–381. https://doi.org/10.1016/s1350-4533(09)00014-9

  38. Jaramillo AG, Benalcazar ME (2018) Real-time hand gesture recognition with EMG using machine learning. In: 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017. vol 2017-January. Institute of Electrical and Electronics Engineers Inc., pp 1–5

    Google Scholar 

  39. Sheng R, Zhang Z (2019) A hand gesture recognition using single-channel electrodes based on artificial neural network. In: Proceedings of 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2019. Institute of Electrical and Electronics Engineers (IEEE), pp 209–213

    Google Scholar 

  40. Hashemi SE, Ali Ahmadi-Pajouh M, Shamsi E (2018) Modeling and simulation of EMG signal and H-Reflex in healthy human subject. In: 2018 25th Iranian Conference on Biomedical Engineering and 2018 3rd International Iranian Conference on Biomedical Engineering, ICBME 2018. Institute of Electrical and Electronics Engineers Inc

    Google Scholar 

  41. Triwiyanto, Wahyunggoro O, Nugroho HA, Herianto (2018) Adaptive threshold to compensate the effect of muscle fatigue on elbow-joint angle estimation based on electromyography. J Mech Eng Sci 12(3):3786–3796. https://doi.org/10.15282/jmes.12.3.2018.3.0334

  42. Obiols EP, Mañanas MA, Ramos Barcelona J (2019) Analysis of electrode arrays for multichannel surface electromyography. https://upcommons.upc.edu/handle/2117/134030

  43. Mason J et al (2019) Modulation of intracortical inhibition and excitation in agonist and antagonist muscles following acute strength training. Eur J Appl Physiol 119(10):2185–2199. https://doi.org/10.1007/s00421-019-04203-9

  44. Zea Guachamín JA (2018) Implementación de un sistema de clasificación de gestos del brazo humano utilizando Myo Armband para mando a distancia de un brazo robótico de 3GDL (Bachelor’s thesis, Quito, 2018)

    Google Scholar 

  45. Staudenmann D, Roeleveld K, Stegeman DF, Van Dieën JH (2010) Methodological aspects of SEMG recordings for force estimation-a tutorial and review. J Electromyogr Kinesiol 20(3):375–387

    Article  Google Scholar 

  46. Steele KM, Tresch MC, Perreault EJ (2013) The number and choice of muscles impact the results of muscle synergy analyses. Front Comput Neurosci (JUL). https://doi.org/10.3389/fncom.2013.00105

  47. D’Andola M, Cesqui B, Portone A, Fernandez L, Lacquaniti F, D’Avella A (2013) Spatiotemporal characteristics of muscle patterns for ball catching. Front Comput Neurosci (JUL). https://doi.org/10.3389/fncom.2013.00107

  48. Flores BE, Olson DL, Dorai VK (1992) Management of multicriteria inventory classification. Math Comput Model 16(12):71–82. https://doi.org/10.1016/0895-7177(92)90021-C

Download references

Acknowledgements

The Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) for the development of the research project CEPRA-2019-13-Reconocimiento de Gestos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Nogales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nogales, R., Guilcapi, J., Benalcazar, F., Vargas, J. (2022). A Brief Literature Review of Mathematical Models of EMG Signals Through Hierarchical Analytical Processing. In: Garcia, M.V., Fernández-Peña, F., Gordón-Gallegos, C. (eds) Advances and Applications in Computer Science, Electronics, and Industrial Engineering. CSEI 2021. Lecture Notes in Networks and Systems, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-030-97719-1_16

Download citation

Publish with us

Policies and ethics