Skip to main content

Towards Digital Twins for the Development of Territories

  • 373 Accesses

Part of the Lecture Notes in Information Systems and Organisation book series (LNISO,volume 54)

Abstract

Management of territorial development is a complex and extremely important process that requires advanced technological solutions and efficient methods of regulating socio-economic systems. The digital twin technology holds enormous potential in this respect although some of its possibilities still remain unexplored and unexploited. This study aims to identify and describe the characteristics of the digital twin of a territory. To this end, the research literature on this problem is analyzed and systematized. A special emphasis is made on the theoretical foundations underlying the concept of digital twin and its main interpretations. The study also discusses the use of digital twins for territorial (urban) development and the features that distinguish city digital twins from their industrial counterparts. The idea of a digital twin of a territory, like digital twins in other spheres, is based on representing a real object (system) in a virtual environment. This virtual replica is created and constantly updated through automated collection and processing of massive amounts of data. Importantly, there should be a two-way flow of data between the real and virtual space. In the case of city projects, however, changes in the virtual environment do not provoke direct responses from its real-life counterpart. Some adjustments in the physical object may, occur, however, if local governments take into account the results of digital twin simulations in their decision-making. Digital twins of territories are sophisticated constructions, elaborated within the interdisciplinary frameworks, and open to the public. These projects are usually highly dependent on socio-economic processes and the degree of civic engagement.

Keywords

  • Digital twin
  • Territorial development
  • Theoretical analysis
  • Smart city

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-94617-3_10
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-94617-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)

References

  1. Albukhitan, S. (2020). Developing digital transformation strategy for manufacturing. Procedia Computer Science, 170, 664–671. https://doi.org/10.1016/j.procs.2020.03.173

    CrossRef  Google Scholar 

  2. Antwerp Smart Zone and Living Lab. (n.d.). Imec city of things. https://www.imeccityofthings.be/en/projects/smart-zone-program-the-city-as-a-lab

  3. Aydemir, H., Zengin, U., Durak, U., & Hartmann, S. (2020). The digital twin paradigm for aircraft—Review and outlook. AIAA Scitech 2020 Forum, 1, 1–12. https://doi.org/10.2514/6.2020-0553

  4. Borodulin, K., Radchenko, G., Shestakov, A., Sokolinsky, L., Tchernykh, A., & Prodan, R. (2017). Towards digital twins cloud platform: Microservices and computational workflows to rule a smart factory. In UCC ’17: Proceedings of the10th International Conference on Utility and Cloud Computing (pp. 209–210). https://doi.org/10.1145/3147213.3149234

  5. Braun, M. (2021). Ethics of digital twins: Four challenges. Journal of Medical Ethics, 47(6), 1–2. https://doi.org/10.1136/medethics-2021-107675

    CrossRef  Google Scholar 

  6. Brooks, P. (2018). Meet Boston’s digital twin. Esri Blog. https://www.esri.com/about/newsroom/blog/3d-gis-boston-digital-twin/

  7. Caruso, P. W., Dumbacher, D. L., & Grieves, M. W. (2010). Product lifecycle management and the quest for sustainable space exploration. In AIAA SPACE Conference and Exposition 2010 (pp. 1–12). https://doi.org/10.2514/6.2010-8628

  8. Castelli, G., Cesta, A., Diez, M., Padula, M., Ravazzani, P., Rinaldi, G., Savazzi, S., Spagnuolo, M., Strambini, L., Tognola, G., & Campana, E. F. (2019). Urban intelligence: A modular, fully integrated, and evolving model for cities digital twinning. In 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT) (pp. 33–37). https://doi.org/10.1109/HONET.2019.8907962

  9. Cheng, J., Chen, W., Tao, F., & Lin, C.-L. (2018). Industrial IoT in 5G environment towards smart manufacturing. Journal of Industrial Information Integration, 10, 10–19. https://doi.org/10.1016/j.jii.2018.04.001

    CrossRef  Google Scholar 

  10. Cimino, C., Negri, E., & Fumagalli, L. (2019). Review of digital twin applications in manufacturing. Computers in Industry, 113, 103130. https://doi.org/10.1016/j.compind.2019.103130

    CrossRef  Google Scholar 

  11. Digital Twin Market by Technology, Type (Product, Process, and System), Application (predictive maintenance, and others), Industry (Aerospace & Defense, Automotive & Transportation, Healthcare, and others), and Geography—Global Forecast to 2026. (n.d.). https://www.marketsandmarkets.com/PressReleases/digital-twin.asp

  12. Dignan, J. (2020). Smart cities in the time of climate change and COVID-19 need digital twins. IET Smart Cities, 2(3), 109–110. https://doi.org/10.1049/iet-smc.2020.0071

    CrossRef  Google Scholar 

  13. Dimitrov, H., & Petrova-Antonova, D. (2021). 3D city model as a first step towards digital twin of Sofia City. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B4–2021), 23–30. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-23-2021

    CrossRef  Google Scholar 

  14. Donghan, W., Wei, T., Xiangyu, D., & Yan, L. (2021). Applications and analysis of digital twin in prognostic and health management. In ICEIEC 2021 - Proceedings of 2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (pp. 200–203). https://doi.org/10.1109/ICEIEC51955.2021.9463843

  15. Errandonea, I., Beltran, S., & Arrizabalaga, S. (2020). Digital twin for maintenance: A literature review. Computers in Industry, 123, 103316. https://doi.org/10.1016/j.compind.2020.103316

    CrossRef  Google Scholar 

  16. Falcone, M., Origlia, A., Campi, M., & Di Martino, S. (2021). From architectural survey to continuous monitoring: Graph-based data management for cultural heritage conservation with digital twins. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 43(B4–2021), 47–53. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-47-2021

  17. Francisco, A., Mohammadi, N., & Taylor, J. E. (2020). Smart city digital twin–enabled energy management: Toward real-time urban building energy benchmarking. Journal of Management in Engineering, 36(2). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000741

  18. Ghita, M., Siham, B., & Hicham, M. (2020). Digital twins development architectures and deployment technologies: Moroccan use case. International Journal of Advanced Computer Science and Applications, 2, 468–478. https://doi.org/10.14569/ijacsa.2020.0110260

  19. Gholami Mayani, M., Svendsen, M., & Oedegaard, S. I. (2018). Drilling digital twin success stories the last 10 years. In Society of Petroleum Engineers - SPE Norway One Day Seminar 2018 (pp. 290–302).

    Google Scholar 

  20. Gobeawan, L., Lin, E. S., Tandon, A., Yee, A. T. K., Khoo, V. H. S., Teo, S. N., Yi, S., Lim, C. W., Wong, S. T., Wise, D. J., Cheng, P., Liew, S. C., Huang, X., Li, Q. H., Teo, L. S., Fekete, G. S., & Poto, M. T. (2018). Modeling trees for virtual Singapore: From data acquisition to CityGML models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W10, 55–62. https://doi.org/10.5194/isprs-archives-XLII-4-W10-55-2018

  21. Goel, R. K., Yadav, C. S., & Vishnoi, S. (2021). Self-sustainable smart cities: Socio-spatial society using participative bottom-up and cognitive top-down approach. Cities, 103370. https://doi.org/10.1016/j.cities.2021.103370

  22. Grieves, M. (2005). Product lifecycle management: The new paradigm for enterprises. International Journal of Product Development, 2, 71–84. https://doi.org/10.1504/IJPD.2005.006669

    CrossRef  Google Scholar 

  23. Grieves, M. (2006). Product lifecycle management: Driving the next generation of lean thinking. McGraw-Hill.

    Google Scholar 

  24. Grieves, M. (2011). Virtually perfect: Driving innovative and lean products through product lifecycle management. Space Coast Press.

    Google Scholar 

  25. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. White Paper, 1, 1–7.

    Google Scholar 

  26. Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Springer. https://doi.org/10.1007/978-3-319-38756-7_4

    CrossRef  Google Scholar 

  27. Gutierrez-Franco, E., Mejia-Argueta, C., & Rabelo, L. (2021). Data-driven methodology to support long-lasting logistics and decision making for urban last-mile operations. Sustainability, 13(111), 6230. https://doi.org/10.3390/su13116230

    CrossRef  Google Scholar 

  28. Huang, S., Wang, G., Yan, Y., & Fang, X. (2020). Blockchain-based data management for digital twin of product. Journal of Manufacturing Systems, 54, 361–371. https://doi.org/10.1016/j.jmsy.2020.01.009

    CrossRef  Google Scholar 

  29. Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29A, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002

    CrossRef  Google Scholar 

  30. Jouan, P., & Hallot, P. (2020). Digital twin: Research framework to support preventive conservation policies. ISPRS International Journal of Geo-Information, 9(4), 228. https://doi.org/10.3390/ijgi9040228

    CrossRef  Google Scholar 

  31. Klebanov, B., Nemtinov, A., & Zvereva, O. (2018). Simulation as an effective instrument for strategic planning and transformation of smart cities. In 18th International Multidisciplinary Scientific GeoConference SGEM 2018 (Vol. 18, pp. 685–692). https://doi.org/10.5593/sgem2018/2.1/S07.087

  32. Kong, T., Hu, T., Zhou, T., & Ye, Y. (2020). Data construction method for the applications of workshop digital twin system. Journal of Manufacturing Systems, 58, 323–328. https://doi.org/10.1016/j.jmsy.2020.02.003

    CrossRef  Google Scholar 

  33. Landolfi, G., Barni, A., Menato, S., Cavadini, F. A., Rovere, D., & Dal Maso, G. (2018). Design of a multi-sided platform supporting CPS deployment in the automation market. In Proceedings—2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018 (pp. 684–689). https://doi.org/10.1109/ICPHYS.2018.8390790

  34. Lehner, H., & Dorffner, L. (2020). Digital geoTwin Vienna: Towards a digital twin city as geodata hub. PFG – Journal of Photogrammetry Remote Sensing and Geoinformation Science, 88, 63–75. https://doi.org/10.1007/s41064-020-00101-4

    CrossRef  Google Scholar 

  35. Lieberman, J., Leidner, A., Percivall, G., & Ronsdorf, C. (2017). Using big data analytics and IoT principles to keep an eye on underground infrastructure. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4592–4601).https://doi.org/10.1109/BigData.2017.8258503

  36. Lima Medeiros, M. (2019). Marking the city: Interactions in multiple space scales in virtual reality. In IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 465–469). https://doi.org/10.1109/ISMAR-Adjunct.2019.00125

  37. Makarov, V. L., Bakhtizin, A. R., Sushko, E. D., & Ageeva, A. F. (2018). An agent-based model of Eurasia and simulation of consequences of large infrastructure projects. Economy of Region, 14(4), 1102–1116. https://doi.org/10.17059/2018-4-4

  38. Mittelstadt, B. (2021). Near-term ethical challenges of digital twins. Journal of Medical Ethics, 47(6), 405–406. https://doi.org/10.1136/medethics-2021-107449

    CrossRef  Google Scholar 

  39. Mottus, M., Dees, M., Astola, H., Dalek, S., Halme, E., Hame, T., Krzyzanowska, M., Makela, A., Marin, G., Minunno, F., Pawlowski, G., & Penttila, J. (2021). A methodology for implementing a digital twin of the earth’s forests to match the requirements of different user groups. GI Forum, 9(1), 130–136. https://doi.org/10.1553/GISCIENCE2021_01_S130

    CrossRef  Google Scholar 

  40. Mylonas, G., Kalogeras, A., Kalogeras, G., Anagnostopoulos, C., Alexakos, C., & Munoz, L. (2021). Digital twins from smart manufacturing to smart cities: A survey. IEEE Access, 9, 143222–143249. https://doi.org/10.1109/ACCESS.2021.3120843

    CrossRef  Google Scholar 

  41. OpenCities Planner. (n.d.). https://www.bentley.com/en/products/brands/opencities-planner

  42. Orozco-Messana, J., Iborra-Lucas, M., & Calabuig-Moreno, R. (2021). Neighbourhood modelling for urban sustainability assessment. Sustainability, 13(9), 4654. https://doi.org/10.3390/su13094654

    CrossRef  Google Scholar 

  43. Otte, T., & Meisen, T. (2021). A reference framework for the performance-based decision support of city authorities in urban freight transport. In 8th International Conference on ICT for Smart Society: Digital Twin for Smart Society, ICISS 2021 – Proceeding. https://doi.org/10.1109/ICISS53185.2021.9533210

  44. Pires, F., Cachada, A., Barbosa, J., Moreira, A. P., & Leitao, P. (2019). Digital twin in industry 4.0: Technologies, applications and challenges. In IEEE International Conference on Industrial Informatics (INDIN), 2019-July (pp. 721–726). https://doi.org/10.1109/INDIN41052.2019.8972134

  45. Preut, A., Kopka, J.-P., & Clausen, U. (2021). Digital twins for the circular economy. Sustainability, 13(18), 10467. https://doi.org/10.3390/su131810467

    CrossRef  Google Scholar 

  46. Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data modeling with automation ML and a communication methodology for data exchange. IFAC-PapersOnLine, 49(30), 12–17. https://doi.org/10.1016/j.ifacol.2016.11.115

    CrossRef  Google Scholar 

  47. Schuh, G., Rebentisch, E., Riesener, M., Ipers, T., Tonnes, C., & Jank, M.-H. (2019). Data quality program management for digital shadows of products. Procedia CIRP, 86, 43–48. https://doi.org/10.1016/j.procir.2020.01.027

    CrossRef  Google Scholar 

  48. Sepasgozar, S. M. E. (2021). Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environment. Buildings, 11, 151. https://doi.org/10.3390/buildings11040151

    CrossRef  Google Scholar 

  49. Shahat, E., Hyun, C. T., & Yeom, C. (2021). City digital twin potentials: A review and research agenda. Sustainability, 13, 3386. https://doi.org/10.3390/su13063386

    CrossRef  Google Scholar 

  50. Stadler, A., & Kolbe, T. H. (2007). Spatio-semantic coherence in the integration of 3D city models. In Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality ISSDQ 2007. https://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf

  51. Stark, R., & Damerau, T. (2019). Digital twin. CIRP encyclopedia of production engineering. Springer. https://doi.org/10.1007/978-3-642-35950-7_16870-1

  52. Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186

    CrossRef  Google Scholar 

  53. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375

    CrossRef  Google Scholar 

  54. Tuegel, E. J., Ingraffea, A. R., Eason, T. G., & Spottswood, S. M. (2011). Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 154798. https://doi.org/10.1155/2011/154798

  55. Vallejo, M. E., Larios, V. M., Magallanes, V. G., Cobian, C., De La Luz Guzman, Castaneda, M., & Tellez, G. B. (2021). Creating resilience for climate change in smart cities based on the local food supply chain. In 2021 IEEE International Smart Cities Conference. https://doi.org/10.1109/ISC253183.2021.9562795

  56. Virtual Singapore. (n.d.). National Research Foundation. https://www.nrf.gov.sg/programmes/virtual-singapore

  57. Vlach, M. (2018). Demography modelling and simulation of the barbarian populations of the “marcomannic” settlement structures of the middle danube region. Prehled Vyzkumu, 59(2), 45–86.

    Google Scholar 

  58. Volkov, S. (2019). City services management methodology based on socio-cyber-physical approach. In ICIT 2019: Proceedings of the 2019 7th International Conference on Information Technology: IoT and Smart City (pp. 373–376). https://doi.org/10.1145/3377170.3377261

  59. White, G., Zink, A., Codeca, L., & Clarke, S. (2021). A digital twin smart city for citizen feedback. Cities, 110, 103064. https://doi.org/10.1016/j.cities.2020.103064

    CrossRef  Google Scholar 

  60. Yadykin, V., Barykin, S., Badenko, V., Bolshakov, N., de la Poza, E., & Fedotov, A. (2021). Global challenges of digital transformation of markets: Collaboration and digital assets. Sustainability, 13(19), 10619. https://doi.org/10.3390/su131910619

    CrossRef  Google Scholar 

  61. Yun, Y., & Lee, M. (2020). Smart City 4.0 from the perspective of open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 5(4), 92. https://doi.org/10.3390/joitmc5040092

  62. Zhang, H., Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017). A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access, 5, 26901–26911. https://doi.org/10.1109/ACCESS.2017.2766453

    CrossRef  Google Scholar 

  63. Zhang, H., Zhang, G., & Yan, Q. (2019). Digital twin-driven cyber-physical production system towards smart shop-floor. Journal of Ambient Intelligence and Humanized Computing, 10(11), 4439–4453. https://doi.org/10.1007/s12652-018-1125-4

    CrossRef  Google Scholar 

  64. Zheng, Y., Shang, Y., Shao, Z., & Jian, L. (2018). A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid. Applied Energy, 217, 1–13. https://doi.org/10.1016/j.apenergy.2018.02.084

    CrossRef  Google Scholar 

  65. Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 96(2), 1149–1163. https://doi.org/10.1007/s00170-018-1617-6

    CrossRef  Google Scholar 

Download references

Acknowledgements

This research is supported by grant 20-78-00067 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arina Suvorova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Suvorova, A. (2022). Towards Digital Twins for the Development of Territories. In: Kumar, V., Leng, J., Akberdina, V., Kuzmin, E. (eds) Digital Transformation in Industry . Lecture Notes in Information Systems and Organisation, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-030-94617-3_10

Download citation