Albukhitan, S. (2020). Developing digital transformation strategy for manufacturing. Procedia Computer Science, 170, 664–671. https://doi.org/10.1016/j.procs.2020.03.173
CrossRef
Google Scholar
Antwerp Smart Zone and Living Lab. (n.d.). Imec city of things. https://www.imeccityofthings.be/en/projects/smart-zone-program-the-city-as-a-lab
Aydemir, H., Zengin, U., Durak, U., & Hartmann, S. (2020). The digital twin paradigm for aircraft—Review and outlook. AIAA Scitech 2020 Forum, 1, 1–12. https://doi.org/10.2514/6.2020-0553
Borodulin, K., Radchenko, G., Shestakov, A., Sokolinsky, L., Tchernykh, A., & Prodan, R. (2017). Towards digital twins cloud platform: Microservices and computational workflows to rule a smart factory. In UCC ’17: Proceedings of the10th International Conference on Utility and Cloud Computing (pp. 209–210). https://doi.org/10.1145/3147213.3149234
Braun, M. (2021). Ethics of digital twins: Four challenges. Journal of Medical Ethics, 47(6), 1–2. https://doi.org/10.1136/medethics-2021-107675
CrossRef
Google Scholar
Brooks, P. (2018). Meet Boston’s digital twin. Esri Blog. https://www.esri.com/about/newsroom/blog/3d-gis-boston-digital-twin/
Caruso, P. W., Dumbacher, D. L., & Grieves, M. W. (2010). Product lifecycle management and the quest for sustainable space exploration. In AIAA SPACE Conference and Exposition 2010 (pp. 1–12). https://doi.org/10.2514/6.2010-8628
Castelli, G., Cesta, A., Diez, M., Padula, M., Ravazzani, P., Rinaldi, G., Savazzi, S., Spagnuolo, M., Strambini, L., Tognola, G., & Campana, E. F. (2019). Urban intelligence: A modular, fully integrated, and evolving model for cities digital twinning. In 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT) (pp. 33–37). https://doi.org/10.1109/HONET.2019.8907962
Cheng, J., Chen, W., Tao, F., & Lin, C.-L. (2018). Industrial IoT in 5G environment towards smart manufacturing. Journal of Industrial Information Integration, 10, 10–19. https://doi.org/10.1016/j.jii.2018.04.001
CrossRef
Google Scholar
Cimino, C., Negri, E., & Fumagalli, L. (2019). Review of digital twin applications in manufacturing. Computers in Industry, 113, 103130. https://doi.org/10.1016/j.compind.2019.103130
CrossRef
Google Scholar
Digital Twin Market by Technology, Type (Product, Process, and System), Application (predictive maintenance, and others), Industry (Aerospace & Defense, Automotive & Transportation, Healthcare, and others), and Geography—Global Forecast to 2026. (n.d.). https://www.marketsandmarkets.com/PressReleases/digital-twin.asp
Dignan, J. (2020). Smart cities in the time of climate change and COVID-19 need digital twins. IET Smart Cities, 2(3), 109–110. https://doi.org/10.1049/iet-smc.2020.0071
CrossRef
Google Scholar
Dimitrov, H., & Petrova-Antonova, D. (2021). 3D city model as a first step towards digital twin of Sofia City. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B4–2021), 23–30. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-23-2021
CrossRef
Google Scholar
Donghan, W., Wei, T., Xiangyu, D., & Yan, L. (2021). Applications and analysis of digital twin in prognostic and health management. In ICEIEC 2021 - Proceedings of 2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (pp. 200–203). https://doi.org/10.1109/ICEIEC51955.2021.9463843
Errandonea, I., Beltran, S., & Arrizabalaga, S. (2020). Digital twin for maintenance: A literature review. Computers in Industry, 123, 103316. https://doi.org/10.1016/j.compind.2020.103316
CrossRef
Google Scholar
Falcone, M., Origlia, A., Campi, M., & Di Martino, S. (2021). From architectural survey to continuous monitoring: Graph-based data management for cultural heritage conservation with digital twins. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 43(B4–2021), 47–53. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-47-2021
Francisco, A., Mohammadi, N., & Taylor, J. E. (2020). Smart city digital twin–enabled energy management: Toward real-time urban building energy benchmarking. Journal of Management in Engineering, 36(2). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000741
Ghita, M., Siham, B., & Hicham, M. (2020). Digital twins development architectures and deployment technologies: Moroccan use case. International Journal of Advanced Computer Science and Applications, 2, 468–478. https://doi.org/10.14569/ijacsa.2020.0110260
Gholami Mayani, M., Svendsen, M., & Oedegaard, S. I. (2018). Drilling digital twin success stories the last 10 years. In Society of Petroleum Engineers - SPE Norway One Day Seminar 2018 (pp. 290–302).
Google Scholar
Gobeawan, L., Lin, E. S., Tandon, A., Yee, A. T. K., Khoo, V. H. S., Teo, S. N., Yi, S., Lim, C. W., Wong, S. T., Wise, D. J., Cheng, P., Liew, S. C., Huang, X., Li, Q. H., Teo, L. S., Fekete, G. S., & Poto, M. T. (2018). Modeling trees for virtual Singapore: From data acquisition to CityGML models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W10, 55–62. https://doi.org/10.5194/isprs-archives-XLII-4-W10-55-2018
Goel, R. K., Yadav, C. S., & Vishnoi, S. (2021). Self-sustainable smart cities: Socio-spatial society using participative bottom-up and cognitive top-down approach. Cities, 103370. https://doi.org/10.1016/j.cities.2021.103370
Grieves, M. (2005). Product lifecycle management: The new paradigm for enterprises. International Journal of Product Development, 2, 71–84. https://doi.org/10.1504/IJPD.2005.006669
CrossRef
Google Scholar
Grieves, M. (2006). Product lifecycle management: Driving the next generation of lean thinking. McGraw-Hill.
Google Scholar
Grieves, M. (2011). Virtually perfect: Driving innovative and lean products through product lifecycle management. Space Coast Press.
Google Scholar
Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. White Paper, 1, 1–7.
Google Scholar
Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Springer. https://doi.org/10.1007/978-3-319-38756-7_4
CrossRef
Google Scholar
Gutierrez-Franco, E., Mejia-Argueta, C., & Rabelo, L. (2021). Data-driven methodology to support long-lasting logistics and decision making for urban last-mile operations. Sustainability, 13(111), 6230. https://doi.org/10.3390/su13116230
CrossRef
Google Scholar
Huang, S., Wang, G., Yan, Y., & Fang, X. (2020). Blockchain-based data management for digital twin of product. Journal of Manufacturing Systems, 54, 361–371. https://doi.org/10.1016/j.jmsy.2020.01.009
CrossRef
Google Scholar
Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29A, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002
CrossRef
Google Scholar
Jouan, P., & Hallot, P. (2020). Digital twin: Research framework to support preventive conservation policies. ISPRS International Journal of Geo-Information, 9(4), 228. https://doi.org/10.3390/ijgi9040228
CrossRef
Google Scholar
Klebanov, B., Nemtinov, A., & Zvereva, O. (2018). Simulation as an effective instrument for strategic planning and transformation of smart cities. In 18th International Multidisciplinary Scientific GeoConference SGEM 2018 (Vol. 18, pp. 685–692). https://doi.org/10.5593/sgem2018/2.1/S07.087
Kong, T., Hu, T., Zhou, T., & Ye, Y. (2020). Data construction method for the applications of workshop digital twin system. Journal of Manufacturing Systems, 58, 323–328. https://doi.org/10.1016/j.jmsy.2020.02.003
CrossRef
Google Scholar
Landolfi, G., Barni, A., Menato, S., Cavadini, F. A., Rovere, D., & Dal Maso, G. (2018). Design of a multi-sided platform supporting CPS deployment in the automation market. In Proceedings—2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018 (pp. 684–689). https://doi.org/10.1109/ICPHYS.2018.8390790
Lehner, H., & Dorffner, L. (2020). Digital geoTwin Vienna: Towards a digital twin city as geodata hub. PFG – Journal of Photogrammetry Remote Sensing and Geoinformation Science, 88, 63–75. https://doi.org/10.1007/s41064-020-00101-4
CrossRef
Google Scholar
Lieberman, J., Leidner, A., Percivall, G., & Ronsdorf, C. (2017). Using big data analytics and IoT principles to keep an eye on underground infrastructure. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4592–4601).https://doi.org/10.1109/BigData.2017.8258503
Lima Medeiros, M. (2019). Marking the city: Interactions in multiple space scales in virtual reality. In IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 465–469). https://doi.org/10.1109/ISMAR-Adjunct.2019.00125
Makarov, V. L., Bakhtizin, A. R., Sushko, E. D., & Ageeva, A. F. (2018). An agent-based model of Eurasia and simulation of consequences of large infrastructure projects. Economy of Region, 14(4), 1102–1116. https://doi.org/10.17059/2018-4-4
Mittelstadt, B. (2021). Near-term ethical challenges of digital twins. Journal of Medical Ethics, 47(6), 405–406. https://doi.org/10.1136/medethics-2021-107449
CrossRef
Google Scholar
Mottus, M., Dees, M., Astola, H., Dalek, S., Halme, E., Hame, T., Krzyzanowska, M., Makela, A., Marin, G., Minunno, F., Pawlowski, G., & Penttila, J. (2021). A methodology for implementing a digital twin of the earth’s forests to match the requirements of different user groups. GI Forum, 9(1), 130–136. https://doi.org/10.1553/GISCIENCE2021_01_S130
CrossRef
Google Scholar
Mylonas, G., Kalogeras, A., Kalogeras, G., Anagnostopoulos, C., Alexakos, C., & Munoz, L. (2021). Digital twins from smart manufacturing to smart cities: A survey. IEEE Access, 9, 143222–143249. https://doi.org/10.1109/ACCESS.2021.3120843
CrossRef
Google Scholar
OpenCities Planner. (n.d.). https://www.bentley.com/en/products/brands/opencities-planner
Orozco-Messana, J., Iborra-Lucas, M., & Calabuig-Moreno, R. (2021). Neighbourhood modelling for urban sustainability assessment. Sustainability, 13(9), 4654. https://doi.org/10.3390/su13094654
CrossRef
Google Scholar
Otte, T., & Meisen, T. (2021). A reference framework for the performance-based decision support of city authorities in urban freight transport. In 8th International Conference on ICT for Smart Society: Digital Twin for Smart Society, ICISS 2021 – Proceeding. https://doi.org/10.1109/ICISS53185.2021.9533210
Pires, F., Cachada, A., Barbosa, J., Moreira, A. P., & Leitao, P. (2019). Digital twin in industry 4.0: Technologies, applications and challenges. In IEEE International Conference on Industrial Informatics (INDIN), 2019-July (pp. 721–726). https://doi.org/10.1109/INDIN41052.2019.8972134
Preut, A., Kopka, J.-P., & Clausen, U. (2021). Digital twins for the circular economy. Sustainability, 13(18), 10467. https://doi.org/10.3390/su131810467
CrossRef
Google Scholar
Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data modeling with automation ML and a communication methodology for data exchange. IFAC-PapersOnLine, 49(30), 12–17. https://doi.org/10.1016/j.ifacol.2016.11.115
CrossRef
Google Scholar
Schuh, G., Rebentisch, E., Riesener, M., Ipers, T., Tonnes, C., & Jank, M.-H. (2019). Data quality program management for digital shadows of products. Procedia CIRP, 86, 43–48. https://doi.org/10.1016/j.procir.2020.01.027
CrossRef
Google Scholar
Sepasgozar, S. M. E. (2021). Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environment. Buildings, 11, 151. https://doi.org/10.3390/buildings11040151
CrossRef
Google Scholar
Shahat, E., Hyun, C. T., & Yeom, C. (2021). City digital twin potentials: A review and research agenda. Sustainability, 13, 3386. https://doi.org/10.3390/su13063386
CrossRef
Google Scholar
Stadler, A., & Kolbe, T. H. (2007). Spatio-semantic coherence in the integration of 3D city models. In Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality ISSDQ 2007. https://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf
Stark, R., & Damerau, T. (2019). Digital twin. CIRP encyclopedia of production engineering. Springer. https://doi.org/10.1007/978-3-642-35950-7_16870-1
Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186
CrossRef
Google Scholar
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
CrossRef
Google Scholar
Tuegel, E. J., Ingraffea, A. R., Eason, T. G., & Spottswood, S. M. (2011). Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 154798. https://doi.org/10.1155/2011/154798
Vallejo, M. E., Larios, V. M., Magallanes, V. G., Cobian, C., De La Luz Guzman, Castaneda, M., & Tellez, G. B. (2021). Creating resilience for climate change in smart cities based on the local food supply chain. In 2021 IEEE International Smart Cities Conference. https://doi.org/10.1109/ISC253183.2021.9562795
Virtual Singapore. (n.d.). National Research Foundation. https://www.nrf.gov.sg/programmes/virtual-singapore
Vlach, M. (2018). Demography modelling and simulation of the barbarian populations of the “marcomannic” settlement structures of the middle danube region. Prehled Vyzkumu, 59(2), 45–86.
Google Scholar
Volkov, S. (2019). City services management methodology based on socio-cyber-physical approach. In ICIT 2019: Proceedings of the 2019 7th International Conference on Information Technology: IoT and Smart City (pp. 373–376). https://doi.org/10.1145/3377170.3377261
White, G., Zink, A., Codeca, L., & Clarke, S. (2021). A digital twin smart city for citizen feedback. Cities, 110, 103064. https://doi.org/10.1016/j.cities.2020.103064
CrossRef
Google Scholar
Yadykin, V., Barykin, S., Badenko, V., Bolshakov, N., de la Poza, E., & Fedotov, A. (2021). Global challenges of digital transformation of markets: Collaboration and digital assets. Sustainability, 13(19), 10619. https://doi.org/10.3390/su131910619
CrossRef
Google Scholar
Yun, Y., & Lee, M. (2020). Smart City 4.0 from the perspective of open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 5(4), 92. https://doi.org/10.3390/joitmc5040092
Zhang, H., Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017). A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access, 5, 26901–26911. https://doi.org/10.1109/ACCESS.2017.2766453
CrossRef
Google Scholar
Zhang, H., Zhang, G., & Yan, Q. (2019). Digital twin-driven cyber-physical production system towards smart shop-floor. Journal of Ambient Intelligence and Humanized Computing, 10(11), 4439–4453. https://doi.org/10.1007/s12652-018-1125-4
CrossRef
Google Scholar
Zheng, Y., Shang, Y., Shao, Z., & Jian, L. (2018). A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid. Applied Energy, 217, 1–13. https://doi.org/10.1016/j.apenergy.2018.02.084
CrossRef
Google Scholar
Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 96(2), 1149–1163. https://doi.org/10.1007/s00170-018-1617-6
CrossRef
Google Scholar